Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 5,236 papers

Reduced sodium appetite and increased oxytocin gene expression in mutant mice lacking beta-endorphin.

  • L F Franchini‎ et al.
  • Neuroscience‎
  • 2003‎

Central opioid and oxytocinergic systems have been involved in the regulatory control of sodium appetite. In addition, previous studies support the existence of a functional interaction between opioid peptides and oxytocinergic pathways, and suggest that beta-endorphin neurons would modulate the activity of central oxytocinergic pathways, its pituitary secretion and sodium appetite. To investigate the role of this opioid peptide in the control of oxytocin (OT) synthesis and sodium appetite regulation we used mice with gene dosage-dependent variations in brain beta-endorphin content, expressing either 100%, 50%, or 0% of normal beta-endorphin content. Our results show that beta-endorphin knockout (KO) and heterozygous (HT) mutant mice consume approximately a 50% less 2% NaCl solution compared with wild type mice (WT), after furosemide and low sodium diet treatment. These data suggest that beta-endorphin may facilitate induced sodium appetite, giving new evidence about the role of beta-endorphin on sodium appetite behavior. Our data also indicate that OT mRNA levels evaluated by in situ hybridization significantly increased within the hypothalamic paraventricular nucleus of WT animals after induced sodium ingestion, giving support to former evidence indicating an inhibitory role for central OT in the control of sodium appetite. Moreover, beta-endorphin mutated mice have similar higher levels of OT mRNA expression after the different conditions analyzed: basal, control or experimental, compared with WT mice. Both control HT and KO mice showed higher OT mRNA expression levels than control WT group and these levels did not change after induced sodium intake. Taken together, our data suggest that the reduced sodium ingestion observed in beta-endorphin deficient mice could be due to a higher expression of the OT gene. This conclusion would support the hypothesis that OT inhibits sodium intake and provides new evidence about beta-endorphin modulation of OT synthesis and sodium appetite.


Persistent regional increases in brain-derived neurotrophic factor in the flurothyl model of epileptogenesis are dependent upon the kindling status of the animal.

  • T R Mhyre‎ et al.
  • Neuroscience‎
  • 2003‎

Brain-derived neurotrophic factor (BDNF) appears to be both regulated by and a regulator of epileptogenesis. In the flurothyl (HFE) model of kindling mice exposed to successive flurothyl trials over 8 days express a rapid, long-lasting reduction in generalized seizure threshold and a more slowly evolving change in seizure phenotype in response to subsequent flurothyl exposure. The BDNF genotype of particular mouse strains appears to influence the epileptogenic progression in this model. Thus, we hypothesized that BDNF signaling pathways are altered by flurothyl-induced seizures. Following HFE kindling, fully kindled (eight seizures) adult male C57BI/6J mice had significantly elevated whole brain BDNF levels through at least 28 days after their final seizure. Mice that received only four HFE seizures (not kindled) had elevated BDNF levels, but only at 1 day post-seizure (DPSz), while BDNF levels were not significantly altered in mice receiving just one HFE seizure at any time point studied. Regional expression patterns of BDNF in the hippocampus, hypothalamus, and frontal cortex were also elevated by one DPSz and returned to control values by 14 DPSz in mice that received four HFE seizures. No changes were seen in the cerebellum, striatum, or piriform cortex. In contrast, fully kindled mice had significantly elevated BDNF levels within the hippocampus, hypothalamus, neocortex, and striatum that remained elevated through at least 14 DPSz, while levels were unchanged in the cerebellum and piriform cortex. Regional results were confirmed using anti-BDNF immunohistochemistry (IHC). Despite changes in BDNF levels following HFE kindling, we were unable to demonstrate alterations either in full-length tyrosine kinase receptor B (TrkB) expression (Western blot and IHC) or in truncated TrkB (IHC) expression levels. Together, these data suggest a model of a positive feedback loop involving seizure activity and seizure number and persistently modified BDNF signaling pathways that influences seizure phenotypes within the HFE kindling paradigm. Thus, long-term elevations in BDNF may be responsible in part for epileptogenic processes and the development of human refractory epilepsies.


Pre-synaptic kainate receptors in GABAergic and glutamatergic axon terminals in the monkey globus pallidus.

  • R Kane-Jackson‎ et al.
  • Neuroscience‎
  • 2003‎

Although the localization and role of kainate receptors in the CNS remain poorly known, complex, and rather unusual, pre-synaptic auto- and heteroreceptor functions have been disclosed in various brain regions. Basal ganglia nuclei, including the globus pallidus, are enriched in GluR6/7 immunoreactivity. Using electron microscopic immunocytochemistry for GluR6/7 combined with post-embedding immunogold labeling for GABA, we demonstrate that GluR6/7 immunoreactivity is enriched in a large subpopulation of small unmyelinated, presumably pre-terminal, axons as well as GABAergic and putative glutamatergic axon terminals in the internal and external segments of the globus pallidus in monkey. Our findings suggest that kainate receptors are located to subserve pre-synaptic modulation of inhibitory and excitatory transmission in the primate globus pallidus.


Vesicular glutamate transporters VGLUT1 and VGLUT2 define two subsets of unipolar brush cells in organotypic cultures of mouse vestibulocerebellum.

  • M G Nunzi‎ et al.
  • Neuroscience‎
  • 2003‎

Different isoforms of a vesicular glutamate transporter (VGLUT) mediate glutamate uptake into synaptic vesicles of excitatory neurons. There is agreement that the VGLUTs are differentially expressed in brain, and that two isoforms, VGLUT1 and VGLUT2, are localized to excitatory axon terminals in the cerebellar cortex. While granule cells express solely VGLUT1, there is no report about the VGLUT(s) of the unipolar brush cell (UBC), the second type of glutamatergic interneuron residing in the cerebellar granular layer. In the mouse, UBCs are particularly numerous in the uvula (lobule IX) and nodulus (lobule X). These folia contain two distinct subsets of UBCs: one kind expresses the calcium-binding protein calretinin (CR), and the other kind expresses the metabotropic glutamate receptor (mGluR) 1alpha. UBCs give rise to an extensive system of intrinsic mossy fibers (MF), whose terminals innervate granule cells and other UBCs, altogether similar to those formed by the extrinsic MFs. The presence of both extrinsic and intrinsic MFs in the vestibulocerebellum makes it difficult to determine which type of VGLUT is contained in MFs formed by the UBC axons. Hence, the nodulus was isolated from sagittal cerebellar slices from postnatal day 10 mice, and cultured for 15-20 days in vitro. Double immunofluorescence and confocal microscopy showed that mossy terminals of CR-positive (CR(+)) UBCs were immunoreactive for VGLUT1 and VGLUT2, while mossy terminals of mGluR1alpha-positive (mGluR1alpha(+)) UBCs were provided with VGLUT1 only. Moreover, CR(+) dendritic brushes were contacted by mossy terminals provided with both transporters, while mGluR1alpha(+) dendritic brushes were contacted by mossy terminals immunopositive for VGLUT1 and immunonegative for VGLUT2. These data indicate that the two UBC subsets use different modalities of vesicular glutamate storage and form separate networks. We consider it possible that expressions of CR with VGLUT1/VGLUT2 and mGluR1alpha(+) with VGLUT1 in the two subsets of vestibulocerebellar UBCs are determined by specific vestibular inputs, carried by groups of primary and/or secondary vestibular afferents.


The proprotein convertase PC2 is involved in the maturation of prosomatostatin to somatostatin-14 but not in the somatostatin deficit in Alzheimer's disease.

  • R Winsky-Sommerer‎ et al.
  • Neuroscience‎
  • 2003‎

A somatostatin deficit occurs in the cerebral cortex of Alzheimer's disease patients without a major loss in somatostatin-containing neurons. This deficit could be related to a reduction in the rate of proteolytic processing of peptide precursors. Since the two proprotein convertases (PC)1 and PC2 are responsible for the processing of neuropeptide precursors directed to the regulated secretory pathway, we examined whether they are involved first in the proteolytic processing of prosomatostatin in mouse and human brain and secondly in somatostatin defect associated with Alzheimer's disease. By size exclusion chromatography, the cleavage of prosomatostatin to somatostatin-14 is almost totally abolished in the cortex of PC2 null mice, while the proportions of prosomatostatin and somatostatin-28 are increased. By immunohistochemistry, PC1 and PC2 were localized in many neuronal elements in human frontal and temporal cortex. The convertases levels were quantified by Western blot, as well as the protein 7B2 which is required for the production of active PC2. No significant change in PC1 levels was observed in Alzheimer's disease. In contrast, a marked decrease in the ratio of the PC2 precursor to the total enzymatic pool was observed in the frontal cortex of Alzheimer patients. This decrease coincides with an increase in the binding protein 7B2. However, the content and enzymatic activity of the PC2 mature form were similar in Alzheimer patients and controls. Therefore, the cortical somatostatin defect is not due to convertase alteration occuring during Alzheimer's disease. Further studies will be needed to assess the mechanisms involved in somatostatin deficiency in Alzheimer's disease.


Development and aging of N-methyl-D-aspartate receptor expression in the prefrontal/frontal cortex of mice.

  • T Ontl‎ et al.
  • Neuroscience‎
  • 2004‎

The present study was designed to determine whether the changes that occur during aging in the expression of the N-methyl-D-aspartate (NMDA) receptor and two NMDA receptor subunits, zeta1 and epsilon2, are a continuation of developmental processes and whether protein and mRNA expression patterns of the subunits are similar across the lifespan. The prefrontal/frontal cortex of C57BL/6 mice of eight different ages (7-8, 13-15, 30-32, 49-53, and 70-72 days and 4.5, 11, and 25 months of age) were used to examine NMDA-displaceable [(3)H]glutamate binding and mRNA in tissue sections and mRNA and protein from homogenates. The lateral prefrontal/frontal cortex of C57BL/6 mice showed more significant declines in density of agonist binding to NMDA receptors during both development and aging than the medial cortex. Changes in mRNA expression for the epsilon2 subunit across the lifespan appeared to be related to the changes in NMDA receptor binding in the lateral cortex, even though the protein expression of the epsilon2 subunit did not show the same pattern of expression as the mRNA during development. The changes in epsilon2 subunit mRNA expression during adult aging may be a continuation of developmental processes, but there was also evidence that expression levels plateaued during early adulthood. The developmental expression of the zeta1subunit in the prefrontal/frontal cortex was influenced by gender and there was no significant effect of adult aging on either the protein or mRNA expression of this subunit. Determining how the expression of the NMDA receptor and its subunits change throughout the lifespan can help us to better understand the processes affecting the receptor during aging. These results should be useful for designing interventions into the aging process to repair or prevent changes in the NMDA receptor and its associated functions, such as learning and memory.


Accumulation of Ym1/2 protein in the mouse olfactory epithelium during regeneration and aging.

  • N Giannetti‎ et al.
  • Neuroscience‎
  • 2004‎

A unique feature of the olfactory system is its efficiency to produce new neurons in the adult. Thus, destruction of the olfactory receptor neurons (ORNs) using chemical (intranasal perfusion with ZnSO4) or surgical (axotomy or bulbectomy) methods, leads to an enhanced rate of proliferation of their progenitors and to complete ORNs regeneration. The aim of our study was to identify new factors implied in this regenerative process. Using an electrophoretic method, we observed the accumulation of a 42 kDa protein after axotomy in the olfactory mucosa, but not in the olfactory bulb. Its expression started after a few days following injury and increased massively during the phase of ORN regeneration. The purification and the sequence characterization revealed that this protein was Ym1/2, recently identified in activated macrophages present in various tissues during inflammation. Western blotting analysis of Ym1/2 confirmed the accumulation of this protein in the regenerating olfactory mucosa consecutively to olfactory axotomy or bulbectomy but also after ZnSO4 irrigation of the nasal cavity. In the olfactory mucosa of control mice, Ym1/2 was hardly detectable in young animals and became more and more abundant with increasing age. In injured and aged mice, Ym1/2 mainly accumulates in the cytoplasm of supporting cells as well as in other cells located throughout the olfactory epithelium. Our results suggest that Ym1/2 is involved in olfactory epithelium remodeling following several kinds of lesions of the adult olfactory mucosa and support the view of a critical role of inflammatory cues in neurodegeneration and aging.


Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord.

  • M Mackie‎ et al.
  • Neuroscience‎
  • 2003‎

The inhibitory neurotransmitter GABA is synthesized by glutamic acid decarboxylase (GAD), and two isoforms of this enzyme exist: GAD65 and GAD67. Immunocytochemical studies of the spinal cord have shown that whilst both are present in the dorsal horn, GAD67 is the predominant form in the ventral horn. The present study was carried out to determine the pattern of coexistence of the two GAD isoforms in axonal boutons in different laminae of the cord, and also to examine the relation of the GADs to the glycine transporter GLYT2 (a marker for glycinergic axons), since many spinal neurons are thought to use GABA and glycine as co-transmitters. Virtually all GAD-immunoreactive boutons throughout the spinal grey matter were labelled by both GAD65 and GAD67 antibodies; however, the relative intensity of staining with the two antibodies varied considerably. In the ventral horn, most immunoreactive boutons showed much stronger labelling with the GAD67 antibody, and many of these were also GLYT2 immunoreactive. However, clusters of boutons with high levels of GAD65 immunoreactivity were observed in the motor nuclei, and these were not labelled with the GLYT2 antibody. In the dorsal horn, some GAD-immunoreactive boutons had relatively high levels of labelling with either GAD65 or GAD67 antibody, whilst others showed a similar degree of labelling with both antibodies. GLYT2 immunoreactivity was associated with many GAD-immunoreactive boutons; however, this did not appear to be related to the pattern of GAD expression. It has recently been reported that there is selective depletion of GAD65, accompanied by a loss of GABAergic inhibition, in the ipsilateral dorsal horn in rats that have undergone peripheral nerve injuries [J Neurosci 22 (2002) 6724]. Our finding that some boutons in the superficial laminae showed relatively high levels of GAD65 and low levels of GAD67 immunoreactivity is therefore significant, since a reduction in GABA synthesis in these axons may contribute to neuropathic pain.


Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged mice.

  • C E Brown‎ et al.
  • Neuroscience‎
  • 2003‎

Zinc plays an important role in synaptic signaling in the mammalian cerebral cortex. Zinc is sequestered into presynaptic vesicles of subpopulations of glutamatergic neurons and is released by depolarization, in a calcium-dependent manner. As the majority of mechanisms that have been suggested to participate in experience-dependent alterations in synaptic strength in the cerebral cortex implicate signaling by glutamate, it stands to reason that zincergic signaling might also be crucial. Here we show that synaptic zinc is rapidly and dynamically modulated in relation to alterations in sensory input and that this response is highly age-dependent. Juvenile, adult, and aged mice were subjected to whisker removal and levels of staining for synaptic zinc in deprived and non-deprived cortical barrels were quantitatively assessed at post-deprivation times ranging from 3 h to 21 days. In the first 12 h, zinc levels increased slightly, but significantly, in all groups. At later time points, zinc levels increased robustly (23%) in the youngest group by 24 h and remained elevated through 7 days. By contrast, deprivation-induced changes in zinc staining in aged animals, achieved their maximal levels at 12 h (approximately 10%) and steadily declined thereafter. Adult animals revealed a biphasic, intermediate change with time. In all age groups, levels of zinc staining returned to baseline by 21 days after whisker plucking. However, only in juvenile and adult mice did we observe that the level of zinc staining in deprived barrel hollows, was correlated with the length of whiskers as they regrew. Our data suggest that alterations in the regulation of synaptic zinc may be involved with decrements of synaptic plasticity that accompany senescence.


Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cdelta in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration.

  • M Kitazawa‎ et al.
  • Neuroscience‎
  • 2003‎

We previously reported that dieldrin, one of the potential environmental risk factors for development of Parkinson's disease, induces apoptosis in dopaminergic cells by generating oxidative stress. Here, we demonstrate that the caspase-3-dependent proteolytic activation of protein kinase Cdelta (PKCdelta) mediates as well as regulates the dieldrin-induced apoptotic cascade in dopaminergic cells. Exposure of PC12 cells to dieldrin (100-300 microM) results in the rapid release of cytochrome C, followed by the activation of caspase-9 and caspase-3 in a time- and dose-dependent manner. The superoxide dismutase mimetic Mn(III)tetrakis(4-benzoic acid)porphyrin chloride significantly attenuates dieldrin-induced cytochrome C release, indicating that reactive oxygen species may contribute to the activation of pro-apoptotic factors. Interestingly, dieldrin proteolytically cleaves native PKCdelta into a 41 kDa catalytic subunit and a 38 kDa regulatory subunit to activate the kinase. The dieldrin-induced proteolytic cleavage of PKCdelta and induction of kinase activity are completely inhibited by pretreatment with 50-100 microM concentrations of the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK), indicating that the proteolytic activation of PKCdelta is caspase-3-dependent. Additionally, Z-VAD-FMK, Z-DEVD-FMK or the PKCdelta specific inhibitor rottlerin almost completely block dieldrin-induced DNA fragmentation. Because dieldrin dramatically increases (40-80-fold) caspase-3 activity, we examined whether proteolytically activated PKCdelta amplifies caspase-3 via positive feedback activation. The PKCdelta inhibitor rottlerin (3-20 microM) dose-dependently attenuates dieldrin-induced caspase-3 activity, suggesting positive feedback activation of caspase-3 by PKCdelta. Indeed, delivery of catalytically active recombinant PKCdelta via a protein delivery system significantly activates caspase-3 in PC12 cells. Finally, overexpression of the kinase-inactive PKCdelta(K376R) mutant in rat mesencephalic dopaminergic neuronal cells attenuates dieldrin-induced caspase-3 activity and DNA fragmentation, further confirming the pro-apoptotic function of PKCdelta in dopaminergic cells. Together, we conclude that caspase-3-dependent proteolytic activation of PKCdelta is a critical event in dieldrin-induced apoptotic cell death in dopaminergic cells.


Non-synaptic release of [3H]noradrenaline in response to oxidative stress combined with mitochondrial dysfunction in rat hippocampal slices.

  • E Milusheva‎ et al.
  • Neuroscience‎
  • 2003‎

Brain ischemia is frequently associated with oxidative stress in the reperfusion period. It is known that noradrenaline (NA) is released in excess under energy deprivation by the sodium-dependent reversal of the monoamine carrier. However, it is not known how oxidative stress affects NA release in the brain alone or in combination with energy deprivation. As a model of oxidative stress, the effect of H(2)O(2) (0.1-1.5 mM) perfusion was investigated in superfused rat hippocampal slices. It elicited a dose-dependent elevation of the release of [(3)H]NA and its tritiated metabolites as well as a simultaneous drop in the tissue energy charge. Mitochondrial inhibitors, i.e. rotenone (10 microM), and oligomycin (10 microM) in combination, also decreased the energy charge, but they had only a mild effect on [(3)H]NA release. However, when H(2)O(2) was added together with oligomycin and rotenone their effect on [(3)H]NA release was greatly exacerbated. H(2)O(2) and mitochondrial inhibitors also induced an increase in [Na(+)](i) in isolated nerve terminals, and their effect was additive. The effect of H(2)O(2) on tritium release was temperature-dependent. It was also attenuated by the glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (30 microM) and (+/-)-2-amino-5-phosphonopentanoic acid (10 microM), by the nitric oxide synthase inhibitors, N omega-nitro-L-arginine methyl ester (100 microM), or 7-nitroindazole (50 microM) and by the vesicular uptake inhibitor tetrabenazine (1 microM). Our results suggest that oxidative stress releases glutamate followed by activation of postsynaptic ionotropic glutamate receptors that trigger nitric oxide production and results in a flood of NA from cytoplasmic stores. The massive elevation of extracellular NA under conditions of oxidative stress combined with mitochondrial dysfunction may provide an additional source of highly reactive free radicals thus initiating a self-amplifying cycle leading to neuronal degeneration.


The cholesterol-lowering drug probucol increases apolipoprotein E production in the hippocampus of aged rats: implications for Alzheimer's disease.

  • D Champagne‎ et al.
  • Neuroscience‎
  • 2003‎

Several recent epidemiological studies have proposed that cholesterol-lowering drug Statin may provide protection against Alzheimer's disease (AD). Probucol is a non-Statin cholesterol-lowering drug and a potent inducer of apolipoprotein E (apoE) production in peripheral circulation. A recent clinical study using Probucol in elderly AD subjects revealed a concomitant stabilisation of cognitive symptoms and significant increases in apoE levels in the cerebral spinal fluid in these patients. To gain insight into the mechanisms underlying these effects, we treated a cohort of aged male rats (26-month-old) with oral dose of Probucol for 30 days. Specifically, we examined the effects of Probucol on apoE production and its receptors (low density lipoprotein receptor [LDLr] and low density lipoprotein receptor-related protein [LRP]), astroglial marker of cell damage (glial fibrillary acidic protein [GFAP]), markers of neuronal synaptic plasticity and integrity (synaptosomal associated protein of 25 kDa [SNAP-25] and synaptophysin) as well as cholesterol biosynthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase [HMGCoAr]) in the hippocampus. We report that Probucol induces the production of apoE and one of its main receptors, LRP, increases HMGCoAr (rate-limiting enzyme in cholesterol synthesis), substantially attenuates age-related increases in glial activation, and induces production of synaptic marker SNAP-25, a molecule commonly associated with synaptogenesis and dendritic remodeling. These findings suggest that Probucol could promote neural and synaptic plasticity to counteract the synaptic deterioration associated with brain aging through an apoE/LRP-mediated system. Consistent with the beneficial effects of other cholesterol-lowering drugs such as the Statin, Probucol could also offers additional benefits based on apoE neurobiology.


Immunocytochemical characterization of afferents to estrogen receptor-containing neurons in the medial preoptic area of the rat.

  • I Kalló‎ et al.
  • Neuroscience‎
  • 1992‎

Double-label immunocytochemistry has been employed to elucidate the chemical nature of the afferent neuronal projections to the estrogen receptor-containing neurons located in the medial preoptic area of the rat brain. To ensure a clear separation of the immunolabelled afferent profiles from the estrogen receptors, the former were visualized first and the diaminobenzidine reaction product was silver-gold intensified. Using a monoclonal antibody raised against purified human estrogen receptors, we observed an intense nuclear immunoreactivity in Vibratome, semithin and ultrathin sections. Neuropeptide-Y, serotonin-, phenylethanolamine N-methyltransferase- and adrenocorticotrophin-immunoreactive axons and varicosities were observed in close apposition to the estrogen receptor-positive cells. At the ultrastructural level, neuropeptide-Y-immunoreactive boutons were seen in synaptic contact with cells showing estrogen receptor immunoreactivity in their nucleus. These results indicate that neurons located in the medial preoptic area, one of the principal sites for the control of female reproductive function, may be influenced by both estrogen and neurotransmitters/neuropeptides via, respectively, nuclear receptors and synaptic contacts.


Distribution and cerebellar projections of cholinergic and corticotropin-releasing factor-containing neurons in the caudal vestibular nuclear complex and adjacent brainstem structures.

  • M Ikeda‎ et al.
  • Neuroscience‎
  • 1992‎

By using immunohistochemistry combined with lesioning and retrograde neuronal labeling techniques, cholinergic neurons and corticotropin-releasing factor-immunoreactive neurons were examined for their distribution, coincidence and cerebellar projections in feline vestibular nuclear complex and adjacent brainstem structures. Cholinergic neurons as revealed here with choline acetyltransferase immunoreactivity were found massively in the abducens and hypoglossal nuclei, dorsal motor nucleus of the vagus nerve and nucleus of Roller; less numerously in the medial vestibular, prepositus hypoglossi and solitary nuclei and the caudal two-thirds of descending vestibular nucleus; and only occasionally in the intercalated and supravestibular nuclei and cell groups f, x and z. Corticotropin-releasing factor-immunoreactive neurons were found clustered in the prepositus hypoglossi nucleus and also in cell groups f and x and the rostral two-thirds of descending vestibular nucleus, less numerously in the medial vestibular, intercalated and solitary nuclei and nucleus of Roller, and only occasionally in the caudal one-third of descending vestibular nucleus, the dorsal motor nucleus of the vagus nerve, supravestibular nucleus and cell group z. The lateral and superior vestibular nuclei did not contain either type of neuron. The two types of immunopositive neurons observed in most of the brainstem nuclei differed in cell size, distribution-pattern and rostrocaudal level of occurrence. While there were many regions which exhibited both types of immunopositive neurons, perikarya colocalizing the cholinergic and peptide markers were not detected in the brainstem. Following unilateral, partial lesioning of the vestibular nuclear complex, corticotropin-releasing factor-immunoreactive mossy fiber terminals (rosettes) disappeared from the ipsilateral flocculus. However, such lesions did not produce clear-cut changes of cholinergic terminals in the vermis. Following retrograde neuronal labeling combined with immunohistochemistry, the two types of immunopositive neurons observed in most of the brainstem sites were found to project to the vermal lobules I-III, IX and X. On comparison of these immunopositive projection neurons with non-immunoreactive, retrogradely labeled neurons, the cholinergic neurons and the peptide-immunoreactive neurons were found to constitute a major part of the total vestibulocerebellar neuronal population. The results indicate chemical heterogeneity in vestibular nuclear complex and cerebellar afferents.


Stimulant doses of caffeine induce c-FOS activation in orexin/hypocretin-containing neurons in rat.

  • J A Murphy‎ et al.
  • Neuroscience‎
  • 2003‎

Although caffeine is a commonly used CNS stimulant, neuronal mechanisms underlying its stimulatory effect are not fully understood. Orexin (hypocretin)-containing neurons play a critical role in arousal and might be activated by acute administration of caffeine. We examined this possibility by using dual-immunostaining for orexin B and c-Fos protein as a marker for neuronal activation. Rats were administered intraperitoneally with 10, 30 or 75 mg/kg caffeine, or saline. As previously reported, caffeine increased locomotion at 10 and 30 mg/kg, but not at 75 mg/kg. The numbers of orexin-immunoreactive and non-orexin-immunoreactive neurons expressing c-Fos were analysed using three counting boxes within the orexin field in the posterior hypothalamus. Compared with saline, all doses of caffeine increased the number of cells immunoreactive for both orexin and c-Fos. The average magnitude of this increase across doses in orexin neurons differed amongst regions; c-Fos expression increased by 343% in the perifornical area and by 158% in the more medial, dorsomedial nucleus. In the lateral hypothalamic area, c-Fos expression increased by 226% at 10 and 30 mg/kg but no change was seen at 75 mg/kg. In contrast, caffeine significantly increased the number of non-orexin-immunoreactive neurons expressing c-Fos only in the dorsomedial nucleus. These results indicate that systemically administered caffeine preferentially activates orexin neurons over non-orexin neurons in the same field, and that this activation is most pronounced in the perifornical region where orexin neurons are most concentrated. The activation of orexin neurons might play a role in the behavioural activation by caffeine.


Ampakines reduce methamphetamine-driven rotation and activate neocortex in a regionally selective fashion.

  • U S Hess‎ et al.
  • Neuroscience‎
  • 2003‎

It has been proposed that glutamatergic and dopaminergic systems are functionally opposed in their regulation of striatal output. The present study tested the effects of drugs that enhance AMPA-receptor-mediated glutamatergic transmission (ampakines) for their effects on dopamine-related alterations in cortical activity and locomotor behavior. Rats with unilateral 6-hydroxydopamine lesions of the ascending nigro-striatal dopamine system were sensitized to methamphetamine and then tested for methamphetamine-induced circling behavior in the presence and absence of ampakines CX546 and CX614. Both ampakines produced rapid, dose-dependent reductions in circling that were evident within 15 min and sustained through 1 h of behavioral testing. In situ hybridization maps of c-fos mRNA expression showed that in the intact hemisphere, ampakine cotreatment markedly increased c-fos expression in parietal, sensori-motor neocortex above that found in rats treated with methamphetamine alone. Ampakine cotreatment did not augment c-fos expression in frontal, sensori-motor cortex or striatum. Still larger ampakine-elicited effects were obtained in parietal cortex of the dopamine-depleted hemisphere where labeling densities were increased by approximately 60% above values found in methamphetamine-alone rats. With these effects, the hemispheric asymmetry of cortical activation was less pronounced in the ampakine-cotreatment group as compared with the methamphetamine-alone group. These results indicate that positive modulation of AMPA-type glutamate receptors 1) can offset behavioral disturbances arising from sensitized dopamine receptors and 2) increases aggregate neuronal activity in a regionally selective manner that is probably dependent upon behavioral demands.


The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer's disease.

  • G L Wenk‎ et al.
  • Neuroscience‎
  • 2003‎

Inflammation and reduced forebrain norepinephrine are features of Alzheimer's disease that may interact to contribute to the degeneration of specific neural systems. We reproduced these conditions within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease. Tumor necrosis factor-alpha was infused into the basal forebrain of young mice pretreated with a norepinephrine neuronal toxin, N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine (DSP4), with the expectation that the loss of noradrenergic input would enhance the loss of cholinergic neurons. The results indicate that chronic infusion of tumor necrosis factor-alpha alone significantly decreased cortical choline acetyltransferase activity and increased the number of activated microglia and astrocytes within the basal forebrain. The loss of forebrain norepinephrine following systemic treatment with DSP4 did not alter the level of cortical choline acetyltransferase activity or activate microglia but significantly activated astrocytes within the basal forebrain. Infusion of tumor necrosis factor-alpha into DSP4-pretreated mice also reduced cortical choline acetyltransferase activity on the side of the infusion; however, the decline was not significantly greater than that produced by the infusion of tumor necrosis factor-alpha alone. The neurodegeneration seen may be indirect since a double-immunofluorescence investigation did not find evidence for the co-existence of tumor necrosis factor-alpha type I receptors on choline acetyltransferase-positive cells in the basal forebrain. The results suggest that noradrenergic cell loss in Alzheimer's disease does not augment the consequences of the chronic neuroinflammation and does not enhance neurodegeneration of forebrain cholinergic neurons.


Glial cell line-derived neurotrophic factor normalizes neurochemical changes in injured dorsal root ganglion neurons and prevents the expression of experimental neuropathic pain.

  • R Wang‎ et al.
  • Neuroscience‎
  • 2003‎

Glial cell line-derived neurotrophic factor (GDNF) is necessary for the development of sensory neurons, and appears to be critical for the survival of dorsal root ganglion (DRG) cells that bind the lectin IB4. Intrathecal infusion of GDNF has been shown to prevent and reverse the behavioral expression of experimental neuropathic pain arising from injury to spinal nerves. This effect of GDNF has been attributed to a blockade of the expression of the voltage gated, tetrodotoxin-sensitive sodium channel subtype, Na(V)1.3, in the injured DRG. Here we report that GDNF given intrathecally via osmotic-pump to nerve-injured rats (L5/L6 spinal nerve ligation) prevented the changes in a variety of neurochemical markers in the DRG upon injury. They include a loss of binding of IB4, downregulation of the purinergic receptor P2X(3), upregulation of galanin and neuropeptide Y immunoreactivity in large diameter DRG cells, and expression of the transcription factor ATF3. GDNF infusion concomitantly prevented the development of spinal nerve ligation-induced tactile hypersensitivity and thermal hyperalgesia. These observations suggest that high dose, exogenous GDNF has a broad neuroprotective role in injured primary afferent. The receptor(s) that mediates these effects of GDNF is not known. GDNF's ability to block neuropathic pain states is not likely to be specific to Na(V)1.3 expression.


(-)-nicotine ameliorates corticosterone's potentiation of N-methyl-d-aspartate receptor-mediated cornu ammonis 1 toxicity.

  • P J Mulholland‎ et al.
  • Neuroscience‎
  • 2004‎

Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e. cortisol), may occur in patients suffering from depression, alcoholism, and other disorders. This has been suggested to produce neuropathological effects, in part, via increased function or sensitivity of N-methyl-d-aspartate (NMDA)-type glutamate receptors. Given that cigarette smoking is highly prevalent in some of these patient groups and nicotine has been shown to reduce toxic consequences of NMDA receptor function, it may be suggested that nicotine intake may attenuate the neurotoxic effects of hypercortisolemia. To investigate this possibility, organotypic hippocampal slice cultures derived from rat were pre-treated with corticosterone (0.001-1 microM) alone or in combination with selective glucocorticoid receptor antagonists for 72-h prior to a brief (1-h) NMDA exposure (5 microM). Pre-treatment with corticosterone (0.001-1 microM) alone did not cause hippocampal damage, while NMDA exposure produced significant cellular damage in the cornu ammonis (CA)1 subregion. No significant damage was observed in the dentate gyrus or CA3 regions following NMDA exposure. Pre-treatment of cultures with corticosterone (0.1-1 microM) markedly exacerbated NMDA-induced CA1 and dentate gyrus region damage. This effect in the CA1 region was prevented by co-administration of the glucocorticoid receptor antagonist RU486 (>or=1 microM), but not spironolactone (1-10 microM), a mineralocorticoid receptor antagonist. In a second series of studies, both acute and pre-exposure of cultures to (-)-nicotine (1-10 microM) significantly reduced NMDA toxicity in the CA1 region. Co-administration of cultures to (-)-nicotine (1-10 microM) with 100 nM corticosterone prevented corticosterone's exacerbation of subsequent CA1 insult. This protective effect of (-)-nicotine was not altered by co-exposure of cultures to 10 microM dihydro-beta-erythroidine but was blocked by co-exposure to 100 nM methyllycaconitine, suggesting the involvement of nicotinic acetylcholine receptors possessing the alpha7* subunit. The present studies suggest a role for hypercortisolemia in sensitizing the hippocampal NMDA receptor system to pathological activation and indicate that prolonged nicotine exposure attenuates this sensitization. Thus, it is possible that one consequence of heavy smoking in those suffering from hypercortisolemia may be a reduction of neuronal injury and sparing of cellular function.


Quantification of synapse formation and maintenance in vivo in the absence of synaptic release.

  • J Bouwman‎ et al.
  • Neuroscience‎
  • 2004‎

Outgrowing axons in the developing nervous system secrete neurotransmitters and neuromodulatory substances, which is considered to stimulate synaptogenesis. However, some synapses develop independent of presynaptic secretion. To investigate the role of secretion in synapse formation and maintenance in vivo, we quantified synapses and their morphology in the neocortical marginal zone of munc18-1 deficient mice which lack both evoked and spontaneous secretion [Science 287 (2000) 864]. Histochemical analyses at embryonic day 18 (E18) showed that the overall organization of the neocortex and the number of cells were similar in mutants and controls. Western blot analysis revealed equal concentrations of pre- and post-synaptic marker proteins in mutants and controls and immunocytochemical analyses indicated that these markers were targeted to the neuropil of the synaptic layer in the mutant neocortex. Electron microscopy revealed that at E16 immature synapses had formed both in mutants and controls. These synapses had a similar synapse diameter, active zone length and contained similar amounts of synaptic vesicles, which were immuno-positive for two synaptic vesicle markers. However, these synapses were three times less abundant in the mutant. Two days later, E18, synapses in the controls had more total and docked vesicles, but not in the mutant. Furthermore, synapses were now five times less abundant in the mutant. In both mutant and controls, synapse-like structures were observed with irregular shaped vesicles on both sides of the synaptic cleft. These 'multivesicular structures' were immuno-positive for synaptic vesicle markers and were four times more abundant in the mutant. We conclude that in the absence of presynaptic secretion immature synapses with a normal morphology form, but fewer in number. These secretion-deficient synapses might fail to mature and instead give rise to multivesicular structures. These two observations suggest that secretion of neurotransmitters and neuromodulatory substances is required for synapse maintenance, not for synaptogenesis. Multivesicular structures may develop out of unstable synapses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: