Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Molecular analyses uncover the phylogenetic placement of the lichenized hyphomycetous genus Cheiromycina.

  • Lucia Muggia‎ et al.
  • Mycologia‎
  • 2017‎

The genus Cheiromycina is one of the few genera of lichenized hyphomycetes for which no sexual reproductive stages have been observed. The genus includes species from boreal to temperate regions of the Northern Hemisphere where it is found growing on bark or wood. Congeners in Cheiromycina are characterized by a noncorticate thallus, nearly immersed in the substrate and presenting powdery unpigmented sporodochia, and containing chlorococcoid photobionts. The relationships of members of Cheiromycina with other fungi are not known. Here we inferred the phylogenetic placement of Cheiromycina using three loci (nuSSU, nuLSU, and mtSSU) representing C. flabelliformis, the type species for the genus, C. petri, and C. reimeri. Our results revealed that the genus Cheiromycina is found within the family Malmideaceae (Lecanorales) where members formed a monophyletic clade sister to the genera Savoronala and Malmidea. This phylogenetic placement and the relationships of Cheiromycina with other lichenized hyphomycetous taxa are here discussed.


New species and records of Coryneum from China.

  • Ning Jiang‎ et al.
  • Mycologia‎
  • 2018‎

Following the abandonment of dual nomenclature and the implementation of single-name nomenclature for pleomorphic fungi, Coryneum was considered to have priority over Pseudovalsa and was recommended for use. Currently, Coryneum is the only genus in the family Coryneaceae (Diaporthales). However, DNA sequence data are lacking for most Coryneum species, and no detailed phylogenetic analyses of the genus are yet available. In the present study, fresh Coryneum samples were collected from chestnut (Castanea) and oak (Quercus) trees in China and morphologically compared with accepted Coryneum species. Based on morphological characteristics, they were identified as one known species, Coryneum castaneicola, and three novel species described here as C. gigasporum, C. sinense, and C. suttonii. Conidial dimensions and host association were considered major characters for species distinction. The previously unknown sexual morph of C. castaneicola is reported and described. A phylogenetic analysis of nuc rDNA internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) and large subunit (28S) sequence data of a representative matrix of Diaporthales confirmed Coryneaceae to represent a monophyletic clade. A phylogenetic analysis of a combined sequence matrix containing the ITS-28S rDNA, the translation elongation factor 1-α (TEF1α), and the second largest subunit of the RNA polymerase II (RPB2) of the four Chinese and four additional European Coryneum species was performed, confirming the distinctness of these novel species.


Acid protease production in fungal root endophytes.

  • Michael S Mayerhofer‎ et al.
  • Mycologia‎
  • 2015‎

Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: