Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Analysis of Mitochondrial haemoglobin in Parkinson's disease brain.

  • Freya Shephard‎ et al.
  • Mitochondrion‎
  • 2016‎

Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of haemoglobin in the mitochondria compared with the cytosol. An additional cycle of hypoxia and recovery led to a significant increase of mitochondrial haemoglobin (p<0.05). We quantified ratios of human mitochondrial haemoglobin in 30 Parkinson's and matched control human post-mortem brains. Relative mitochondrial/cytosolic quantities of haemoglobin were obtained for the cortical region, substantia nigra and cerebellum. In age matched post-mortem brain mitochondrial haemoglobin ratios change, decreasing with disease duration in female cerebellum samples (n=7). The change is less discernible in male cerebellum (n=18). In cerebellar mitochondria, haemoglobin localisation in males with long disease duration shifts from the intermembrane space to the outer membrane of the organelle. These new data illustrate dynamic localisation of mitochondrial haemoglobin within the cell. Mitochondrial haemoglobin should be considered in the context of gender differences characterised in Parkinson's disease. It has been postulated that cerebellar circuitry may be activated to play a protective role in individuals with Parkinson's. The changing localisation of intracellular haemoglobin in response to hypoxia presents a novel pathway to delineate the role of the cerebellum in Parkinson's disease.


Peptides from aminoacyl-tRNA synthetases can cure the defects due to mutations in mt tRNA genes.

  • Silvia Francisci‎ et al.
  • Mitochondrion‎
  • 2011‎

Recent results from several laboratories have confirmed that human and yeast leucyl- and valyl-tRNA synthetases can rescue the respiratory defects due to mutations in mitochondrial tRNA genes. In this report we show that this effect cannot be ascribed to the catalytic activity per se and that isolated domains of aminoacyl-tRNA synthetases and even short peptides thereof have suppressing effects.


MitoLoc: A method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells.

  • Jakob Vowinckel‎ et al.
  • Mitochondrion‎
  • 2015‎

Mitochondria assemble into flexible networks. Here we present a simple method for the simultaneous quantification of mitochondrial membrane potential and network morphology that is based on computational co-localisation analysis of differentially imported fluorescent marker proteins. Established in, but not restricted to, Saccharomyces cerevisiae, MitoLoc reproducibly measures changes in membrane potential induced by the uncoupling agent CCCP, by oxidative stress, in respiratory deficient cells, and in ∆fzo1, ∆ref2, and ∆dnm1 mutants that possess fission and fusion defects. In combination with super-resolution images, MitoLoc uses 3D reconstruction to calculate six geometrical classifiers which differentiate network morphologies in ∆fzo1, ∆ref2, and ∆dnm1 mutants, under oxidative stress and in cells lacking mtDNA, even when the network is fragmented to a similar extent. We find that mitochondrial fission and a decline in membrane potential do regularly, but not necessarily, co-occur. MitoLoc hence simplifies the measurement of mitochondrial membrane potential in parallel to detect morphological changes in mitochondrial networks. Marker plasmid open-source software as well as the mathematical procedures are made openly available.


The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore.

  • Pinadda Varanyuwatana‎ et al.
  • Mitochondrion‎
  • 2012‎

Phosphate activation of the mitochondrial permeability transition pore (MPTP) opening is well-documented and could involve the phosphate carrier (PiC) that we have proposed is the pore's cyclophilin-D binding component. However, others have reported that following CyP-D ablation Pi inhibits MPTP opening while cyclosporine-A (CsA) inhibits MPTP opening only when Pi is present. Here we demonstrate that Pi activates MPTP opening under all energised and de-energised conditions tested while CsA inhibits pore opening whether or not Pi is present. Using siRNA in HeLa cells we could reduce PiC expression by 65-80% but this inhibited neither mitochondrial calcium accumulation nor MPTP opening.


A critical analysis of the combined usage of protein localization prediction methods: Increasing the number of independent data sets can reduce the accuracy of predicted mitochondrial localization.

  • Kieren T Lythgow‎ et al.
  • Mitochondrion‎
  • 2011‎

In the absence of a comprehensive experimentally derived mitochondrial proteome, several bioinformatic approaches have been developed to aid the identification of novel mitochondrial disease genes within mapped nuclear genetic loci. Often, many classifiers are combined to increase the sensitivity and specificity of the predictions. Here we show that the greatest sensitivity and specificity are obtained by using a combination of seven carefully selected classifiers. We also show that increasing the number of independent prediction methods can paradoxically decrease the accuracy of predicting mitochondrial localization. This approach will help to accelerate the identification of new mitochondrial disease genes by providing a principled way for the selection for combination of appropriate prediction methods of mitochondrial localization of proteins.


A novel pathogenic m.4412G>A MT-TM mitochondrial DNA variant associated with childhood-onset seizures, myopathy and bilateral basal ganglia changes.

  • Albert Z Lim‎ et al.
  • Mitochondrion‎
  • 2019‎

Mitochondrial DNA variants in the MT-TM (mt-tRNAMet) gene are rare, typically associated with myopathic phenotypes. We identified a novel MT-TM variant resulting in prolonged seizures with childhood-onset myopathy, retinopathy, short stature and elevated CSF lactate associated with bilateral basal ganglia changes on neuroimaging. Muscle biopsy confirmed multiple respiratory chain deficiencies and focal cytochrome c oxidase (COX) histochemical abnormalities. Next-generation sequencing of the mitochondrial genome revealed a novel m.4412G>A variant at high heteroplasmy levels in muscle that fulfils all accepted criteria for pathogenicity including segregation within single muscle fibres, thus broadening the genotypic and phenotypic landscape of mitochondrial tRNA-related disease.


Tissue imaging reveals disruption of epithelial mitochondrial networks and loss of mitochondria-associated cytochrome-C in inflamed human and murine colon.

  • Andrew K Chojnacki‎ et al.
  • Mitochondrion‎
  • 2023‎

Mitochondrial dysfunction as defined by transcriptomic and proteomic analysis of biopsies or ultra-structure in transmission electron microscopy occurs in inflammatory bowel disease (IBD); however, mitochondrial dynamics in IBD have received minimal attention, with most investigations relying on cell-based in vitro models. We build on these studies by adapting the epithelial cell immunofluorescence workflow to imaging mitochondrial networks in normal and inflamed colonic tissue (i.e., murine di-nitrobenzene sulphonic acid (DNBS)-induced colitis, human ulcerative colitis). Using antibodies directed to TOMM20 (translocase of outer mitochondrial membrane 20) and cytochrome-C, we have translated the cell-based protocol for high-fidelity imaging to examine epithelial mitochondria networks in intact intestine. In epithelia of non-inflamed small or large intestinal tissue, the mitochondrial networks were dense and compact. This pattern was more pronounced in the basal region of the cell compared to that between the nucleus and apical surface facing the gut lumen. In comparison, mitochondrial networks in inflamed tissue displayed substantial loss of TOMM20+ staining. The remaining networks were less dense and fragmented, and contained isolated spherical mitochondrial fragments. The degree of mitochondrial network fragmentation mirrored the severity of inflammation, as assessed by blinded semi-quantitative scoring. As an indication of poor cell 'health' or viability, cytosolic cytochrome-C was observed in enterocytes with highly fragmented mitochondria. Thus, high-resolution and detailed visualization of mitochondrial networks in tissue is a feasible and valuable approach to assess disease, suited to characterizing mitochondrial abnormalities in tissue. We speculate that drugs that maintain a functional remodelling mitochondrial network and limit excess fragmentation could be a valuable addition to current therapies for IBD.


β-Hydroxybutyrate preferentially enhances neuron over astrocyte respiration while signaling cellular quiescence.

  • Scott J Koppel‎ et al.
  • Mitochondrion‎
  • 2023‎

While ketone bodies support overall brain energy metabolism, it is increasingly clear specific brain cell types respond differently to ketone body availability. Here, we characterized how SH-SY5Y neuroblastoma cell, primary neuron, and primary astrocyte bioenergetics and nutrient sensing pathways respond to β-hydroxybutyrate (βOHB). SH-SY5Y cells and primary neurons, but not astrocytes, exposed to βOHB increased respiration and decreased PI3K-Akt-mTOR signaling. Despite increased carbon availability and respiration, SH-SY5Y cells treated with βOHB reduced their overall metabolic activity and cell cycling rate. Levels of the quiescence-regulating Yamanaka factors increased to a broader extent in SH-SY5Y cells and primary neurons. We propose a βOHB-induced increase in neuron respiration, accompanied by activation of quiescence associated pathways, could alleviate bioenergetic stress and limit cell senescence. This in turn could potentially benefit conditions, including brain aging and neurodegenerative diseases, that feature bioenergetic decline and cell senescence.


Polymorphisms in DNA polymerase γ affect the mtDNA stability and the NRTI-induced mitochondrial toxicity in Saccharomyces cerevisiae.

  • Enrico Baruffini‎ et al.
  • Mitochondrion‎
  • 2015‎

Several pathological mutations have been identified in human POLG gene, encoding for the catalytic subunit of Pol γ, the solely mitochondrial replicase in animals and fungi. However, little is known regarding non-pathological polymorphisms found in this gene. Here we studied, in the yeast model Saccharomyces cerevisiae, eight human polymorphisms. We found that most of them are not neutral but enhanced both mtDNA extended mutability and the accumulation of mtDNA point mutations, either alone or in combination with a pathological mutation. In addition, we found that the presence of some SNPs increased the stavudine and/or zalcitabine-induced mtDNA mutability and instability.


Elevated mitochondrial DNA copy number found in ubiquinone-deficient clk-1 mutants is not rescued by ubiquinone precursor 2-4-dihydroxybenzoate.

  • Cait S Kirby‎ et al.
  • Mitochondrion‎
  • 2021‎

Inside mitochondria reside semi-autonomous genomes, called mtDNA. mtDNA is multi-copy per cell and mtDNA copy number can vary from hundreds to thousands of copies per cell. The variability of mtDNA copy number between tissues, combined with the lack of variability of copy number within a tissue, suggest a homeostatic copy number regulation mechanism. Mutations in the gene encoding the Caenorhabditis elegans hydroxylase, CLK-1, result in elevated mtDNA. CLK-1's canonical role in ubiquinone biosynthesis results in clk-1 mutants lacking ubiquinone. Importantly, clk-1 mutants also exhibit slowed biological timing phenotypes (pharyngeal pumping, defecation, development) and an activated stress response (UPRmt). These biological timing and stress phenotypes have been attributed to ubiquinone deficiency; however, it is unknown whether the mtDNA phenotype is also due to ubiquinone deficiency. To test this, in animals carrying the uncharacterized clk-1 (ok1247) mutant allele, we supplemented with an exogenous ubiquinone precursor 2-4-dihydroxybenzoate (DHB), which has previously been shown to restore ubiquinone biosynthesis. We measured phenotypes as a function of DHB across a log-scale range. Unlike the biological timing and stress phenotypes, the elevated mtDNA phenotype was not rescued. Since CLK-1's canonical role is in ubiquinone biosynthesis and DHB does not rescue mtDNA copy number, we infer CLK-1 has an additional function in homeostatic mtDNA copy number regulation.


The mitochondrial chaperone TRAP-1 regulates the glutamine metabolism in tumor cells.

  • Shrikant Purushottam Dharaskar‎ et al.
  • Mitochondrion‎
  • 2023‎

Understanding cancer cell metabolism always provides information on hidden dimensions of tumor adaptations. Warburg's theory that cancer cells opt for aerobic glycolysis over the mitochondrial oxidative phosphorylation (OXPHOS) system is widely accepted. However, the hypothesis does not explain the mitochondrion's role in these cells. Here, we demonstrate that intact mitochondria are used for anaplerotic functions and ATP production by utilizing glutamine with the help of mitochondrial chaperone TRAP-1 (Tumor Necrosis Factor Receptor-associated Protein 1). TRAP-1 otherwise promotes aerobic glycolysis by lowering the mitochondrial OXPHOS in the presence of glucose. Here, we show that TRAP-1 maintains mitochondrial integrity and augments glutamine metabolism upon glucose deprivation to meet the cellular energy demand. The enhanced PER and ECAR correlating with increased ATP production suggest that glutamine fuels mitochondria in the presence of TRAP-1. We also found that TRAP1-dependent glutamine utilization involves the HIF2α-SLC1A5-GLS axis and is independent of hypoxia. Subsequently, we show that the metastatic potential of tumor cells is linked with glucose utilization, whereas the proliferative potential is linked with both glucose and glutamine utilization. Our findings establish that TRAP-1 contributes to enhanced glutamine utilization through the HIF2α-SLC1A5-GLS axis. Our results endow that TRAP-1 inhibitors can be potential drug candidates to combat tumor metabolism. Therefore, their use, either alone or in combination with existing chemotherapeutic agents, may target tumor metabolism and improve anticancer treatment response.


Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy.

  • Patrick Yu-Wai-Man‎ et al.
  • Mitochondrion‎
  • 2017‎

Leber hereditary optic neuropathy (LHON) is an important cause of mitochondrial blindness among young adults. In this study, we investigated the potential of four quinone analogues (CoQ1, CoQ10, decylubiquinone and idebenone) in compensating for the deleterious effect of the m.11778G>A mitochondrial DNA mutation. The LHON fibroblast cell lines tested exhibited reduced cell growth, impaired mitochondrial bioenergetics and elevated levels of reactive oxygen species (ROS). Idebenone increased ATP production and reduced ROS levels, but the effect was partial and cell-specific. The remaining quinone analogues had variable effects and a negative impact on certain mitochondrial parameters was observed in some cell lines.


Interactions between peptidyl tRNA hydrolase homologs and the ribosomal release factor Mrf1 in S. pombe mitochondria.

  • Laurent Dujeancourt‎ et al.
  • Mitochondrion‎
  • 2013‎

Mitochondrial translation synthesizes key subunits of the respiratory complexes. In Schizosaccharomyces pombe, strains lacking Mrf1, the mitochondrial stop codon recognition factor, are viable, suggesting that other factors can play a role in translation termination. S. pombe contains four predicted peptidyl tRNA hydrolases, two of which (Pth3 and Pth4), have a GGQ motif that is conserved in class I release factors. We show that high dosage of Pth4 can compensate for the absence of Mrf1 and loss of Pth4 exacerbates the lack of Mrf1. Also Pth4 is a component of the mitochondrial ribosome, suggesting that it could help recycling stalled ribosomes.


Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT.

  • Vivienne C M Neeve‎ et al.
  • Mitochondrion‎
  • 2013‎

Exome sequencing identified compound heterozygous mutations in the recently discovered mitochondrial methionyl-tRNA formyltransferase (MTFMT) gene in two sisters with mild Leigh syndrome and combined respiratory chain deficiency. The mutations lead to undetectable levels of the MTFMT protein. Blue native polyacrylamide gel electrophoresis showed decreased complexes I and IV, and additional products stained with complex V antibodies, however the overall steady state level of mt-tRNA(Met) was normal. Our data illustrate that exome sequencing is an excellent diagnostic tool, and its value in clinical medicine is enormous, however it can only be optimally exploited if combined with detailed phenotyping and functional studies.


Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy.

  • Rebecca J Wilson‎ et al.
  • Mitochondrion‎
  • 2019‎

Assessment of structural and functional changes of mitochondria is vital for biomedical research as mitochondria are the power plants essential for biological processes and tissue/organ functions. Others and we have developed a novel reporter gene, pMitoTimer, which codes for a redox sensitive mitochondrial targeted protein that switches from green fluorescence protein (GFP) to red fluorescent protein (DsRed) when oxidized. It has been shown in transfected cells, transgenic C. elegans and Drosophila m., as well as somatically transfected adult skeletal muscle that this reporter gene allows quantifiable assessment of mitochondrial structure, oxidative stress, and lysosomal targeting of mitochondria-containing autophagosomes. Here, we generated CAG-CAT-MitoTimer transgenic mice using a transgene containing MitoTimer downstream of LoxP-flanked bacterial chloramphenicol acetyltransferase (CAT) gene with stop codon under the control of the cytomegalovirus (CMV) enhancer fused to the chicken β-actin promoter (CAG). When CAG-CAT-MitoTimer mice were crossbred with various tissue-specific (muscle, adipose tissue, kidney, and pancreatic tumor) or global Cre transgenic mice, the double transgenic offspring showed MitoTimer expression in tissue-specific or global manner. Lastly, we show that hindlimb ischemia-reperfusion caused early, transient increases of mitochondrial oxidative stress, mitochondrial fragmentation and lysosomal targeting of autophagosomes containing mitochondria as well as a later reduction of mitochondrial content in skeletal muscle along with mitochondrial oxidative stress in sciatic nerve. Thus, we have generated conditional MitoTimer mice and provided proof of principle evidence of their utility to simultaneously assess mitochondrial structure, oxidative stress, and mitophagy in vivo in a tissue-specific, controllable fashion.


Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women.

  • Anna L Guyatt‎ et al.
  • Mitochondrion‎
  • 2018‎

The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.


High-throughput BioSorter quantification of relative mitochondrial content and membrane potential in living Caenorhabditis elegans.

  • Young Joon Kwon‎ et al.
  • Mitochondrion‎
  • 2018‎

Mitochondrial respiratory chain disease is caused by a wide range of individually rare genetic disorders that impair cellular energy metabolism. While fluorescence microscopy analysis of nematodes fed MitoTracker Green (MTG) and tetramethylrhodamine ethyl ester (TMRE) can reliably quantify relative mitochondrial density and membrane potential, respectively, in C. elegans models of mitochondrial dysfunction, it is a tedious process with limitations in the number and age of animals that can be studied. A novel, large particle, flow cytometry-based method reported here accelerates and automates the relative quantitation of mitochondrial physiology in nematode populations. Relative fluorescence profiles of nematode populations co-labeled with MTG and TMRE were obtained and analyzed by BioSorter (Union Biometrica). Variables tested included genetic mutation (wild-type N2 Bristol versus nuclear-encoded respiratory chain complex I mutant gas-1(fc21) worms), animal age (day 1 versus day 4 adults), classical respiratory chain inhibitor and uncoupler effects (oligomycin, FCCP), and pharmacologic therapy duration (24h versus 96h treatments with glucose or nicotinic acid). A custom MATLAB script, which can be run on any computer with MATLAB runtime, was written to automatically quantify and analyze results in large animal populations. BioSorter analysis independently validated relative MTG and TMRE changes that we had previously performed by fluorescence microscopy in a variety of experimental conditions, with notably greater animal population sizes and substantially reduced experimental time. Older, fragile animal populations that are difficult to study by microscopy approaches were readily amenable to analysis with the BioSorter method. Overall, this high-throughput method enables efficient relative quantitation of in vivo mitochondrial physiology over time in a living animal in response to gene mutations and candidate therapies, which can be used to accelerate the translation of basic research into optimization of clinical therapies for mitochondrial disease.


The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease.

  • Joanna L Elson‎ et al.
  • Mitochondrion‎
  • 2015‎

Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health.


A proposed consensus panel of organisms for determining evolutionary conservation of mt-tRNA point mutations.

  • John W Yarham‎ et al.
  • Mitochondrion‎
  • 2012‎

Assigning pathogenicity to mt-tRNA variants requires multiple strands of evidence. Evolutionary conservation is often considered mandatory, but lack of a standard panel of organisms to assess conservation complicates comparison between reports and undermines the value of conservation-based evidence. We demonstrate that intra-species MTT sequence variation is sufficiently low for sequence data from a single organism to adequately represent a species. On this basis, we propose a standardised panel of organisms for conservation assessment and describe integration of this conservation panel into a pathogenicity scoring system designed to assess mt-tRNA variation associated with mitochondrial disease.


Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension.

  • Benjamin Michael Davis‎ et al.
  • Mitochondrion‎
  • 2017‎

Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective effect compared to control with DARC (p<0.05) and Brn3 (p<0.01). Topical CoQ10 appears an effective therapy preventing RGC apoptosis and loss in glaucoma-related models.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: