Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Multiplatform characterization of dynamic changes in breast milk during lactation.

  • Nicholas J Andreas‎ et al.
  • Electrophoresis‎
  • 2015‎

The multicomponent analysis of human breast milk (BM) by metabolic profiling is a new area of study applied to determining milk composition, and is capable of associating BM composition with maternal characteristics, and subsequent infant health outcomes. A multiplatform approach combining HPLC-MS and ultra-performance LC-MS, GC-MS, CE-MS, and 1 H NMR spectroscopy was used to comprehensively characterize metabolic profiles from seventy BM samples. A total of 710 metabolites spanning multiple molecular classes were defined. The utility of the individual and combined analytical platforms was explored in relation to numbers of metabolites identified, as well as the reproducibility of the methods. The greatest number of metabolites was identified by the single phase HPLC-MS method, while CE-MS uniquely profiled amino acids in detail and NMR was the most reproducible, whereas GC-MS targeted volatile compounds and short chain fatty acids. Dynamic changes in BM composition were characterized over the first 3 months of lactation. Metabolites identified as altering in abundance over lactation included fucose, di- and triacylglycerols, and short chain fatty acids, known to be important for infant immunological, neurological, and gastrointestinal development, as well as being an important source of energy. This extensive metabolic coverage of the dynamic BM metabolome provides a baseline for investigating the impact of maternal characteristics, as well as establishing the impact of environmental and dietary factors on the composition of BM, with a focus on the downstream health consequences this may have for infants.


Comparison of RP-HPLC modes to analyse the N-glycome of the free-living nematode Pristionchus pacificus.

  • Shi Yan‎ et al.
  • Electrophoresis‎
  • 2015‎

Pristionchus pacificus is a free-living nematode increasingly used as an organism for comparison to the more familiar model Caenorhabditis elegans. In this study, we examined the N-glycans of this organism isolated after serial release with peptide:N-glycosidases F and A; after fluorescent labelling with 2-aminopyridine, chromatographic fractionation by three types of RP-HPLC (with either classical C18, fused core C18 or alkylamide-bonded phases) followed by mass spectrometric analyses revealed key features of its N-glycome. In addition to paucimannosidic and oligomannosidic glycans typical of invertebrates, N-glycans with two core fucose residues were detected. Furthermore, a range of glycans carrying up to three phosphorylcholine residues was observed whereas, unlike C. elegans, no tetrafucosylated N-glycans were detected. Structures with three fucose residues, unusual methylation of core α1,3-fucose or with galactosylated fucose motifs were found in low amounts; these features may correlate with a different ensemble or expression of glycosyltransferase genes as compared to C. elegans. From an analytical perspective, both the alkylamide RP-amide and fused core C18 columns, as compared to a classical C18 material, offer advantages in terms of resolution and of elution properties, as some minor pyridylamino-labelled glycans (e.g. those carrying phosphorylcholine) appear in earlier fractions and so potential losses of such structures due to insufficient gradient length can be avoided.


Determination of size-dependent metal distribution in dissolved organic matter by SEC-UV/VIS-ICP-MS with special focus on changes in seawater.

  • Anna Rathgeb‎ et al.
  • Electrophoresis‎
  • 2016‎

Iron is an essential micronutrient for all marine organisms, but it is also a growth limiting factor as the iron concentrations in the open ocean are below 1 nmol/L in sea water iron is almost entirely bound to organic ligands of the dissolved organic matter fraction, which are mostly of unknown structure. The input from rivers was traditionally considered as less important due to estuarine sedimentation processes of the mainly colloidal iron particles. However, recent studies have shown that this removal is not complete and riverine input may represent an important iron source in the open ocean. In this context, iron transport by land-derived natural organic matter (NOM), and dissolved organic matter (DOM) have been identified as carrier mechanisms for riverine iron. The aim of this work is to characterize complexes containing iron and other metals in waters simulating estuarine conditions in order to help understand which role iron-DOM compounds play in the open ocean. A method based on size-exclusion chromatography (SEC) with sequential UV/VIS and ICP-MS detection was developed for investigation of DOM size distribution and for assessment of the size-dependent metal distribution in NOM-rich surface water. Furthermore, sample matrix experiments were also performed revealing a dependence of DOM size distribution upon seawater concentration and different compounds present in seawater. Finally, efforts toward determination of DOM size with standardization with typical SEC standards indicate that only relative comparisons are possible with this approach, and that the sample matrix composition strongly influences obtained results.


On-chip technology for single-cell arraying, electrorotation-based analysis and selective release.

  • Kevin Keim‎ et al.
  • Electrophoresis‎
  • 2019‎

This paper reports a method for label-free single-cell biophysical analysis of multiple cells trapped in suspension by electrokinetic forces. Tri-dimensional pillar electrodes arranged along the width of a microfluidic chamber define actuators for single cell trapping and selective release by electrokinetic force. Moreover, a rotation can be induced on the cell in combination with a negative DEP force to retain the cell against the flow. The measurement of the rotation speed of the cell as a function of the electric field frequency define an electrorotation spectrum that allows to study the dielectric properties of the cell. The system presented here shows for the first time the simultaneous electrorotation analysis of multiple single cells in separate micro cages that can be selectively addressed to trap and/or release the cells. Chips with 39 micro-actuators of different interelectrode distance were fabricated to study cells with different sizes. The extracted dielectric properties of Henrietta Lacks, human embryonic kidney 293, and human immortalized T lymphocytes cells were found in agreements with previous findings. Moreover, the membrane capacitance of M17 neuroblastoma cells was investigated and found to fall in in the range of 7.49 ± 0.39 mF/m2 .


Identity confirmation of anthocyanins in berries by LC-DAD-IM-QTOFMS.

  • María Del Mar Delgado-Povedano‎ et al.
  • Electrophoresis‎
  • 2021‎

Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low-field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC-DAD-DTIM-QTOFMS method. DTIM-MS allows accurate determination of collision cross sections (DT CCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DT CCSN2 , and confirmed high-resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC-IM-MS platform.


Mathematical model to reduce loop mediated isothermal amplification (LAMP) false-positive diagnosis.

  • Lindsay Schneider‎ et al.
  • Electrophoresis‎
  • 2019‎

Loop mediated isothermal amplification (LAMP) is a nucleic acid amplification technique performed under isothermal conditions. The output of this amplification technique includes multiple different sizes of deoxyribonucleic acid (DNA) structures which are identified by a banding pattern on gel electrophoresis plots. Although this is a specific amplification technique, the complexity of the primer design and amplification still lead to the issue of obtaining false-positive results, especially when a positive reading is determined solely by whether there is any banding pattern in the gel electrophoresis plot. Here, we first performed extensive LAMP experiments and evaluated the DNA structures using microchip electrophoresis. We then developed a mathematical model derived from the various components that make up an entire LAMP structure to predict the full LAMP structure size in base pairs. This model can be implemented by users to make predictions for specific, DNA size dependent, banding patterns on their gel electrophoresis plots. Each prediction is specific to the target sequence and primers used and therefore reduces incorrect diagnosis errors through identifying true-positive and false-positive results. This model was accurately tested with multiple primer sets in house and was also translatable to different DNA and RNA types in previously published literature. The mathematical model can ultimately be used to reduce false-positive LAMP diagnosis errors for applications ranging from tuberculosis diagnostics to E. coli to numerous other infectious diseases.


The effect of pH adjusted electrolytes on capillary isoelectric focusing assessed by high-resolution dynamic computer simulation.

  • Anna Takácsi-Nagy‎ et al.
  • Electrophoresis‎
  • 2022‎

The effect of the composition of electrolytes on capillary IEF is assessed for systems with carrier ampholytes covering two pH units and with catholytes of decreased pH, anolytes of increased pH, and both electrode solutions with adjusted pH values. For electrolytes composed of formic acid as anolyte and ammonium hydroxide as catholyte, simulation is demonstrated to provide the expected IEF system in which analytes with pI values within the formed pH gradient are focused and become immobile. Addition of formic acid to the catholyte results in the formation of an isotachophoretic zone structure that migrates toward the cathode. With ammonium hydroxide added to the anolyte migration occurs toward the anode. In the two cases, all carrier components and amphoteric analytes migrate isotachophoretically as cations or anions, respectively. The data reveal that millimolar amounts of a counter ion are sufficient to convert an IEF pattern into an ITP system. With increasing amounts of the added counter ion, the overall length of the migrating zone structure shrinks, the range of the pH gradient changes, and the migration rate increases. The studied examples indicate that systems of this type reported in the literature should be classified as ITP and not IEF. When both electrolytes are titrated, a non-uniform background electrolyte composed of formic acid and ammonium hydroxide is established in which analytes migrate according to local pH and conductivity without forming IEF or ITP zone structures. Simulation data are in qualitative agreement with previously published experimental data.


Development of a new ultra-high-performance liquid chromatography-tandem mass spectrometry method for the determination of digoxin and digitoxin in plasma: Comparison with a clinical immunoassay.

  • Marco Ballotari‎ et al.
  • Electrophoresis‎
  • 2022‎

Cardiac glycosides digoxin and digitoxin are used in therapy for the treatment of congestive heart failure. Moreover, these compounds can be responsible for intoxication cases caused by fortuitous ingestion of leaves of Digitalis. Due to the narrow therapeutic range of these drugs, therapeutic drug monitoring is recommended in the clinical practice. In this context, immunoassays-based methods are generally employed but digoxin- and digitoxin-like compounds can interfere with the analysis. The aim of this study was to develop and validate an original UPLC-MS/MS method for the determination of digoxin and digitoxin in plasma. The method shows adequate sensitivity and selectivity with acceptable matrix effects and very good linearity, accuracy, precision, and recovery. A simple liquid-liquid extraction procedure was used for sample clean-up. The method was applied for the analysis of n = 220 plasma samples collected in two different clinical chemistry laboratories and previously tested by the same immunoassay. The statistical comparison showed a relevant negative bias of the UPLC-MS/MS method versus the immunoassay. These results are consistent with an immunoassay overestimation of digoxin plasmatic levels due to cross-reaction events with endogenous digoxin-like substances.


Isometric artifacts from polymerase chain reaction-massively parallel sequencing analysis of short tandem repeat loci: An emerging issue from a new technology?

  • Irena Zupanič Pajnič‎ et al.
  • Electrophoresis‎
  • 2022‎

The recent introduction of polymerase chain reaction (PCR)-massively parallel sequencing (MPS) technologies in forensics has changed the approach to allelic short tandem repeat (STR) typing because sequencing cloned PCR fragments enables alleles with identical molecular weights to be distinguished based on their nucleotide sequences. Therefore, because PCR fidelity mainly depends on template integrity, new technical issues could arise in the interpretation of the results obtained from the degraded samples. In this work, a set of DNA samples degraded in vitro was used to investigate whether PCR-MPS could generate "isometric drop-ins" (IDIs; i.e., molecular products having the same length as the original allele but with a different nucleotide sequence within the repeated units). The Precision ID GlobalFiler NGS STR panel kit was used to analyze 0.5 and 1 ng of mock samples in duplicate tests (for a total of 16 PCR-MPS analyses). As expected, several well-known PCR artifacts (such as allelic dropout, stutters above the threshold) were scored; 95 IDIs with an average occurrence of 5.9 IDIs per test (min: 1, max: 11) were scored as well. In total, IDIs represented one of the most frequent artifacts. The coverage of these IDIs reached up to 981 reads (median: 239 reads), and the ratios with the coverage of the original allele ranged from 0.069 to 7.285 (median: 0.221). In addition, approximately 5.2% of the IDIs showed coverage higher than that of the original allele. Molecular analysis of these artifacts showed that they were generated in 96.8% of cases through a single nucleotide change event, with the C > T transition being the most frequent (85.7%). Thus, in a forensic evaluation of evidence, IDIs may represent an actual issue, particularly when DNA mixtures need to be interpreted because they could mislead the operator regarding the number of contributors. Overall, the molecular features of the IDIs described in this work, as well as the performance of duplicate tests, may be useful tools for managing this new class of artifacts otherwise not detected by capillary electrophoresis technology.


Enantioselective CE-MS analysis of ketamine metabolites in urine.

  • Friederike A Sandbaumhüter‎ et al.
  • Electrophoresis‎
  • 2023‎

The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.


Micellar capillary electrophoresis separation and thermo-optical absorbance detection of products from manual peptide sequencing.

  • M Chen‎ et al.
  • Electrophoresis‎
  • 1994‎

Micellar capillary electrophoresis is optimized for separation of phenylthiohydantoin (PTH) amino acids produced in manual Edman degradation reaction for protein sequencing. There are also two major side-products produced by the Edman degradation reaction: diphenylthiourea and dimethylphenylthiourea. We report the complete separation of 19 PTH amino acids plus the two major side-reaction products in 10 min. Capillary electrophoresis is used to identify the five residues generated by manual Edman degradation sequencing of a pentapeptide.


Assessment of impact of physico-chemical drug properties on monitoring drug levels by micellar electrokinetic capillary chromatography with direct serum injection.

  • A Schmutz‎ et al.
  • Electrophoresis‎
  • 1994‎

The impact of physico-chemical properties of 25 compounds, including antiepileptic, anti-inflammatory and beta-blocking drugs, on their determination by micellar electrokinetic capillary chromatography (MECC) with direct serum injection (DSI) is discussed. Having a pH 9.2 buffer containing 75 mM sodium dodecyl sulfate (SDS), elution is dependent on hydrophobicity, the order of emergence being basically according to increasing octanol/water partition coefficients (logP values). Peak shape is determined by the dissociation behavior (expressed by pKa) and plasma protein binding (PPB). Sharp peaks are produced by compounds having low PPB and, independently of PPB, by drugs with pKa values which are similar to the buffer pH. Broad or double peaks are established by drugs of low pKa values and significant (> about 40%) PPB. In order to evaluate the effective amount of a protein-bound drug measured by MECC-DSI, serum levels of drugs with different PPB, namely ethosuximide (no PPB), phenobarbital (PPB of about 50%) and naproxen (PPB > 99%) have been determined by both MECC-DSI and MECC with extract injection (MECC-EXI). In each case, with more than 40 sera, there is good agreement between the two sets of data. Thus, employing MECC-DSI, total amounts of drugs are determined, i.e. a complete release of the drugs from the proteins is effected by the impact of dodecyl sulfate on the sampled proteins.


Fluorescence lifetime excitation cytometry by kinetic dithering.

  • Wenyan Li‎ et al.
  • Electrophoresis‎
  • 2014‎

Flow cytometers are powerful high-throughput devices that capture spectroscopic information from individual particles or cells. These instruments provide a means of multi-parametric analyses for various cellular biomarkers or labeled organelles and cellular proteins. However, the spectral overlap of fluorophores limits the number of fluorophores that can be used simultaneously during experimentation. Time-resolved parameters enable the quantification of fluorescence decay kinetics, thus circumventing common issues associated with intensity-based measurements. This contribution introduces fluorescence lifetime excitation cytometry by kinetic dithering (FLECKD) as a method to capture multiple fluorescence lifetimes using a hybrid time-domain approach. The FLECKD approach excites fluorophores by delivering short pulses of light to cells or particles by rapid dithering and facilitates measurement of complex fluorescence decay kinetics by flow cytometry. Our simulations demonstrated a resolvable fluorescence lifetime value as low as 1.8 ns (±0.3 ns) with less than 20% absolute error. Using the FLECKD instrument, we measured the shortest average fluorescence lifetime value of 2.4 ns and found the system measurement error to be ±0.3 ns (SEM), from hundreds of monodisperse and chemically stable fluorescent microspheres. Additionally, we demonstrate the ability to detect two distinct excited state lifetimes from fluorophores in single cells using FLECKD. This approach presents a new ability to resolve multiple fluorescence lifetimes while retaining the fluidic throughput of a cytometry system. The ability to discriminate more than one average fluorescence lifetime expands the current capabilities of high-throughput and intensity-based cytometry assays as the need to tag one single cell with multiple fluorophores is now widespread.


Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control.

  • Christin Scheller‎ et al.
  • Electrophoresis‎
  • 2020‎

The material properties of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its proteins are discussed. We review the viral structure, size, rigidity, lipophilicity, isoelectric point, buoyant density and centrifugation conditions, stability against pH, temperature, UV light, gamma radiation, and susceptibility to various chemical agents including solvents and detergents. Possible inactivation, downstream, and formulation conditions are given including suitable buffers and some first ideas for quality-control methods. This information supports vaccine development and discussion with competent authorities during vaccine approval and is certainly related to drug-targeting strategies and hygienics. Several instructive tables are given, including the pI and grand average of hydropathicity (GRAVY) of SARS-CoV-1 and -2 proteins in comparison. SARS-CoV-1 and SARS-CoV-2 are similar in many regards, so information can often be derived. Both are unusually stable, but sensitive at their lipophilic membranes. However, since seemingly small differences can have strong effects, for example, on immunologically relevant epitope settings, unevaluated knowledge transfer from SARS-CoV-1 to SARS-CoV-2 cannot be advised. Published knowledge regarding downstream processes, formulations and quality assuring methods is, as yet, limited. However, standard approaches employed for other viruses and vaccines seem to be feasible including virus inactivation, centrifugation conditions, and the use of adjuvants.


CE-MS for anionic metabolic profiling: An overview of methodological developments.

  • Marlien van Mever‎ et al.
  • Electrophoresis‎
  • 2019‎

The efficient profiling of highly polar and charged metabolites in biological samples remains a huge analytical challenge in metabolomics. Over the last decade, new analytical techniques have been developed for the selective and sensitive analysis of polar ionogenic compounds in various matrices. Still, the analysis of such compounds, notably for acidic ionogenic metabolites, remains a challenging endeavor, even more when the available sample size becomes an issue for the total analytical workflow. In this paper, we give an overview of the possibilities of capillary electrophoresis-mass spectrometry (CE-MS) for anionic metabolic profiling by focusing on main methodological developments. Attention is paid to the development of improved separation conditions and new interfacing designs in CE-MS for anionic metabolic profiling. A complete overview of all CE-MS-based methods developed for this purpose is provided in table format (Table 1) which includes information on sample type, separation conditions, mass analyzer and limits of detection (LODs). Selected applications are discussed to show the utility of CE-MS for anionic metabolic profiling, especially for small-volume biological samples. On the basis of the examination of the reported literature in this specific field, we conclude that there is still room for the design of a highly sensitive and reliable CE-MS method for anionic metabolic profiling. A rigorous validation and the availability of standard operating procedures would be highly favorable in order to make CE-MS an alternative, viable analytical technique for metabolomics.


Size and molecular weight determination of polysaccharides by means of nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA).

  • Victor U Weiss‎ et al.
  • Electrophoresis‎
  • 2018‎

Size, size distribution and molecular weight (MW) determination of nanoparticles and that are for example large polymers, are of great interest and pose an analytical challenge. In this context, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) is a valuable tool with growing impact. Separation of single-charged analytes according to their electrophoretic mobility diameter (EMD) starting from single-digit EMDs up to several hundred nm diameters is possible. In case of spherical analytes, the EMD corresponds to the dry nanoparticle size. Additionally, the instrument is capable of number-based, single-particle detection following the recommendation of the European Commission for nanoparticle characterization (2011/696/EU). In case an EMD/MW correlation for a particular compound class (based on availability of well-defined standards) exists, a nanoparticle's MW can be determined from its EMD. In the present study, we focused on nES GEMMA of linear and branched, water-soluble polysaccharides forming nanoparticles and were able to obtain spectra for both analyte classes regarding single-charged species. Based on EMDs for corresponding analytes, an excellent EMD/MW correlation could be obtained in case of the branched natural polymer (dextran). This enables the determination of dextran MWs from nES GEMMA spectra despite high analyte polydispersity and in a size/MW range, where classical mass spectrometry is limited. EMD/MW correlations based on linear (pullulans, oat-ß-glucans) polymers were significantly different, possibly indicating challenges in the exact MW determination of these compounds by, for example, chromatographic and light scattering means. Despite these observations, nES GEMMA of linear, monosaccharide-based polymers enabled the determination of size and size-distribution of such dry bionanoparticles.


New tools and resources in metabolomics: 2016-2017.

  • Biswapriya B Misra‎
  • Electrophoresis‎
  • 2018‎

Rapid advances in mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based platforms for metabolomics have led to an upsurge of data every single year. Newer high-throughput platforms, hyphenated technologies, miniaturization, and tool kits in data acquisition efforts in metabolomics have led to additional challenges in metabolomics data pre-processing, analysis, interpretation, and integration. Thanks to the informatics, statistics, and computational community, new resources continue to develop for metabolomics researchers. The purpose of this review is to provide a summary of the metabolomics tools, software, and databases that were developed or improved during 2016-2017, thus, enabling readers, developers, and researchers access to a succinct but thorough list of resources for further improvisation, implementation, and application in due course of time.


In vitro characterisation of murine pre-adipose nucleated cells reveals electrophysiological cycles associated with biological clocks.

  • Capucine Martin‎ et al.
  • Electrophoresis‎
  • 2022‎

Adipocytes are energy stores of the body which also play a role in physiological regulation and homeostasis through their endocrine activity. Adipocyte circadian clocks drive rhythms in gene expression, and dysregulation of these circadian rhythms associates with pathological conditions such as diabetes. However, although the role of circadian rhythms in adipose cells and related tissues has been studied from phsyiological and molecular perspectives, they have not yet been explored from an electrical perspective. Research into electro-chronobiology has revealed that electrical properties have important roles in peripheral clock regulation independently of transcription-translation feedback loops. We have used dielectrophoresis to study electrophysiological rhythms in pre-adipocytes - representing an adipocyte precursor and nucleated cell-based model, using serum shocking as the cellular method of clock entrainment. The results revealed significant electrophysiological rhythms, culminating in circadian (ca. 24 hourly) cycles in effective membrane capacitance and radius properties, whereas effective membrane conductance was observed to express ultradian (ca. 14 hourly) rhythms. These data shed new light into pre-adipocyte electrical behaviour and present a potential target for understanding and manipulation of metabolic physiology.


A fast-screening approach for the tentative identification of drug-related metabolites from three non-steroidal anti-inflammatory drugs in hydroponically grown edible plants by HPLC-drift-tube-ion-mobility quadrupole time-of-flight mass spectrometry.

  • Franz Mlynek‎ et al.
  • Electrophoresis‎
  • 2021‎

The (tentative) identification of unknown drug-related phase II metabolites in plants upon drug uptake remains a challenging task despite improved analytical instrument performance. To broaden the knowledge of possible drug metabolization, a fast-screening approach for the tentative identification of drug-related phase II metabolites is presented in this work. Therefore, an in silico database for the three non-steroidal anti-inflammatory drugs (ketoprofen, mefenamic acid, and naproxen) and a sub-group of their theoretical phase II metabolites (based on combinations with glucose, glucuronic acid, and malonic acid) was created. Next, the theoretical exact masses (protonated species and ammonia adducts) were calculated and used as precursor ions in an autoMS/MS measurement method. The applicability of this workflow was tested on the example of eleven edible plants, which were hydroponically grown in solutions containing the respective drug at a concentration level of 20 mg/L. For the three drugs investigated this led to the tentative identification of 41 metabolites (some of them so far not described in this context), such as combinations of hydroxylated mefenamic acid with up to four glucose units or hydroxylated mefenamic acid with two glucose and three malonic acid units.


Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis.

  • M Kamo‎ et al.
  • Electrophoresis‎
  • 1995‎

Arabidopsis (Arabidopsis thaliana) proteins were isolated from five tissues (leaf, stem, root, seed and callus), and separated by two-dimensional gel electrophoresis (2-DE). 2-DE was carried out by immobilized pH gradient (IPG) in the first dimension, and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension. With the aid of comigrated five-marker proteins, the patterns of 2-DE gels for each tissue were graphically combined by a computer into a single synthetic image for the integrated Arabidopsis protein spots. The protein spot images, altogether 4763, were characterized by both molecular mass and isoelectric point. Partial amino(N)-terminal sequences of 101 protein spots were analyzed by Edman degradation. Fifty seven proteins were partially sequenced and 46 proteins appeared to have blocked N-termini. Deblocking by hydrazine vapor was carried out on 14 proteins and two of them were found to be pyroglutamyl-blocked N-termini. Forty seven new proteins were found by the present investigation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: