Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

High-Throughput Functional Analysis Distinguishes Pathogenic, Nonpathogenic, and Compensatory Transcriptional Changes in Neurodegeneration.

  • Ismael Al-Ramahi‎ et al.
  • Cell systems‎
  • 2018‎

Discriminating transcriptional changes that drive disease pathogenesis from nonpathogenic and compensatory responses is a daunting challenge. This is particularly true for neurodegenerative diseases, which affect the expression of thousands of genes in different brain regions at different disease stages. Here we integrate functional testing and network approaches to analyze previously reported transcriptional alterations in the brains of Huntington disease (HD) patients. We selected 312 genes whose expression is dysregulated both in HD patients and in HD mice and then replicated and/or antagonized each alteration in a Drosophila HD model. High-throughput behavioral testing in this model and controls revealed that transcriptional changes in synaptic biology and calcium signaling are compensatory, whereas alterations involving the actin cytoskeleton and inflammation drive disease. Knockdown of disease-driving genes in HD patient-derived cells lowered mutant Huntingtin levels and activated macroautophagy, suggesting a mechanism for mitigating pathogenesis. Our multilayered approach can thus untangle the wealth of information generated by transcriptomics and identify early therapeutic intervention points.


Apparent bias toward long gene misregulation in MeCP2 syndromes disappears after controlling for baseline variations.

  • Ayush T Raman‎ et al.
  • Nature communications‎
  • 2018‎

Recent studies have suggested that genes longer than 100 kb are more likely to be misregulated in neurological diseases associated with synaptic dysfunction, such as autism and Rett syndrome. These length-dependent transcriptional changes are modest in MeCP2-mutant samples, but, given the low sensitivity of high-throughput transcriptome profiling technology, here we re-evaluate the statistical significance of these results. We find that the apparent length-dependent trends previously observed in MeCP2 microarray and RNA-sequencing datasets disappear after estimating baseline variability from randomized control samples. This is particularly true for genes with low fold changes. We find no bias with NanoString technology, so this long gene bias seems to be particular to polymerase chain reaction amplification-based platforms. In contrast, authentic long gene effects, such as those caused by topoisomerase inhibition, can be detected even after adjustment for baseline variability. We conclude that accurate characterization of length-dependent (or other) trends requires establishing a baseline from randomized control samples.


Synthesis and biological evaluation of novel tricyclic matrinic derivatives as potential anti-filovirus agents.

  • Xin Zhang‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2018‎

Twenty-six novel tricyclic sophoridinic and matrinic derivatives containing a common chlorinated benzene fragment were designed, synthesized and evaluated for their anti-ebolavirus (EBOV) activities. Structure-activity relationship analysis indicated: (i) 12N-dichlorobenzyl motif was beneficial for the activity; (ii) the chiral configuration at C5 atom might not affect the activity much. Among the target compounds, compound 7d exhibited the most potent potency against EBOV with an IC50 value of 5.29 μmol/L and an SI value of over 37.8. Further in vivo anti-EBOV assay of 7d identified its high effectiveness, and in vivo anti-MARV assay of 7d suggested its inspiring broad-spectrum anti-filovirus activity. The results provided powerful information on further strategic optimization and development of this kind of compounds against filoviruses.


Coexpression enrichment analysis at the single-cell level reveals convergent defects in neural progenitor cells and their cell-type transitions in neurodevelopmental disorders.

  • Kaifang Pang‎ et al.
  • Genome research‎
  • 2020‎

A large number of genes have been implicated in neurodevelopmental disorders (NDDs), but their contributions to NDD pathology are difficult to decipher without understanding their diverse roles in different brain cell types. Here, we integrated NDD genetics with single-cell RNA sequencing data to assess coexpression enrichment patterns of various NDD gene sets. We identified midfetal cortical neural progenitor cell development-more specifically, the ventricular radial glia-to-intermediate progenitor cell transition at gestational week 10-as a key point of convergence in autism spectrum disorder (ASD) and epilepsy. Integrated Gene Ontology-based analysis further revealed that ASD genes activate neural differentiation and inhibit cell cycle during the transition, whereas epilepsy genes function as downstream effectors in the same processes, offering one possible explanation for the high comorbidity rate of the two disorders. This approach provides a framework for investigating the cell-type-specific pathophysiology of NDDs.


Evolutionarily conserved regulators of tau identify targets for new therapies.

  • Jiyoen Kim‎ et al.
  • Neuron‎
  • 2023‎

Tauopathies are neurodegenerative diseases that involve the pathological accumulation of tau proteins; in this family are Alzheimer disease, corticobasal degeneration, and chronic traumatic encephalopathy, among others. Hypothesizing that reducing this accumulation could mitigate pathogenesis, we performed a cross-species genetic screen targeting 6,600 potentially druggable genes in human cells and Drosophila. We found and validated 83 hits in cells and further validated 11 hits in the mouse brain. Three of these hits (USP7, RNF130, and RNF149) converge on the C terminus of Hsc70-interacting protein (CHIP) to regulate tau levels, highlighting the role of CHIP in maintaining tau proteostasis in the brain. Knockdown of each of these three genes in adult tauopathy mice reduced tau levels and rescued the disease phenotypes. This study thus identifies several points of intervention to reduce tau levels and demonstrates that reduction of tau levels via regulation of this pathway is a viable therapeutic strategy for Alzheimer disease and other tauopathies.


miR760 regulates ATXN1 levels via interaction with its 5' untranslated region.

  • Larissa Nitschke‎ et al.
  • Genes & development‎
  • 2020‎

Identifying modifiers of dosage-sensitive genes involved in neurodegenerative disorders is imperative to discover novel genetic risk factors and potential therapeutic entry points. In this study, we focus on Ataxin-1 (ATXN1), a dosage-sensitive gene involved in the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). While the precise maintenance of ATXN1 levels is essential to prevent disease, the mechanisms that regulate ATXN1 expression remain largely unknown. We demonstrate that ATXN1's unusually long 5' untranslated region (5' UTR) negatively regulates its expression via posttranscriptional mechanisms. Based on recent reports that microRNAs (miRNAs) can interact with both 3' and 5' UTRs to regulate their target genes, we identify miR760 as a negative regulator that binds to a conserved site in ATXN1's 5' UTR to induce RNA degradation and translational inhibition. We found that delivery of Adeno-associated virus (AAV)-expressing miR760 in the cerebellum reduces ATXN1 levels in vivo and mitigates motor coordination deficits in a mouse model of SCA1. These findings provide new insights into the regulation of ATXN1 levels, present additional evidence for miRNA-mediated gene regulation via 5' UTR binding, and raise the possibility that noncoding mutations in the ATXN1 locus may act as risk factors for yet to be discovered progressive ataxias.


MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function.

  • Sameer S Bajikar‎ et al.
  • eLife‎
  • 2023‎

Loss- and gain-of-function of MeCP2 causes Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. MeCP2 binds methyl-cytosines to finely tune gene expression in the brain, but identifying genes robustly regulated by MeCP2 has been difficult. By integrating multiple transcriptomics datasets, we revealed that MeCP2 finely regulates growth differentiation factor 11 (Gdf11). Gdf11 is down-regulated in RTT mouse models and, conversely, up-regulated in MDS mouse models. Strikingly, genetically normalizing Gdf11 dosage levels improved several behavioral deficits in a mouse model of MDS. Next, we discovered that losing one copy of Gdf11 alone was sufficient to cause multiple neurobehavioral deficits in mice, most notably hyperactivity and decreased learning and memory. This decrease in learning and memory was not due to changes in proliferation or numbers of progenitor cells in the hippocampus. Lastly, loss of one copy of Gdf11 decreased survival in mice, corroborating its putative role in aging. Our data demonstrate that Gdf11 dosage is important for brain function.


Metabolomics of mammalian brain reveals regional differences.

  • William T Choi‎ et al.
  • BMC systems biology‎
  • 2018‎

The mammalian brain is organized into regions with specific biological functions and properties. These regions have distinct transcriptomes, but little is known whether they may also differ in their metabolome. The metabolome, a collection of small molecules or metabolites, is at the intersection of the genetic background of a given cell or tissue and the environmental influences that affect it. Thus, the metabolome directly reflects information about the physiologic state of a biological system under a particular condition. The objective of this study was to investigate whether various brain regions have diverse metabolome profiles, similarly to their genetic diversity. The answer to this question would suggest that not only the genome but also the metabolome may contribute to the functional diversity of brain regions.


Molecular pathway identification using biological network-regularized logistic models.

  • Wen Zhang‎ et al.
  • BMC genomics‎
  • 2013‎

Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature.


MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

  • Julia Wang‎ et al.
  • American journal of human genetics‎
  • 2017‎

One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research.


Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma.

  • Qiumin Tan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Capicua (CIC) regulates a transcriptional network downstream of the RAS/MAPK signaling cascade. In Drosophila, CIC is important for many developmental processes, including embryonic patterning and specification of wing veins. In humans, CIC has been implicated in neurological diseases, including spinocerebellar ataxia type 1 (SCA1) and a neurodevelopmental syndrome. Additionally, we and others have reported mutations in CIC in several cancers. However, whether CIC is a tumor suppressor remains to be formally tested. In this study, we found that deletion of Cic in adult mice causes T cell acute lymphoblastic leukemia/lymphoma (T-ALL). Using hematopoietic-specific deletion and bone marrow transplantation studies, we show that loss of Cic from hematopoietic cells is sufficient to drive T-ALL. Cic-null tumors show up-regulation of the KRAS pathway as well as activation of the NOTCH1 and MYC transcriptional programs. In sum, we demonstrate that loss of CIC causes T-ALL, establishing it as a tumor suppressor for lymphoid malignancies. Moreover, we show that mouse models lacking CIC in the hematopoietic system are robust models for studying the role of RAS signaling as well as NOTCH1 and MYC transcriptional programs in T-ALL.


Comprehensive evaluation of RNA-seq quantification methods for linearity.

  • Haijing Jin‎ et al.
  • BMC bioinformatics‎
  • 2017‎

Deconvolution is a mathematical process of resolving an observed function into its constituent elements. In the field of biomedical research, deconvolution analysis is applied to obtain single cell-type or tissue specific signatures from a mixed signal and most of them follow the linearity assumption. Although recent development of next generation sequencing technology suggests RNA-seq as a fast and accurate method for obtaining transcriptomic profiles, few studies have been conducted to investigate best RNA-seq quantification methods that yield the optimum linear space for deconvolution analysis.


Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome.

  • Laura A Lavery‎ et al.
  • eLife‎
  • 2020‎

Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.


Disruption of MeCP2-TCF20 complex underlies distinct neurodevelopmental disorders.

  • Jian Zhou‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.


Cross-species genetic screens identify transglutaminase 5 as a regulator of polyglutamine-expanded ataxin-1.

  • Won-Seok Lee‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Many neurodegenerative disorders are caused by abnormal accumulation of misfolded proteins. In spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded (polyQ-expanded) ataxin-1 (ATXN1) causes neuronal toxicity. Lowering total ATXN1, especially the polyQ-expanded form, alleviates disease phenotypes in mice, but the molecular mechanism by which the mutant ATXN1 is specifically modulated is not understood. Here, we identified 22 mutant ATXN1 regulators by performing a cross-species screen of 7787 and 2144 genes in human cells and Drosophila eyes, respectively. Among them, transglutaminase 5 (TG5) preferentially regulated mutant ATXN1 over the WT protein. TG enzymes catalyzed cross-linking of ATXN1 in a polyQ-length-dependent manner, thereby preferentially modulating mutant ATXN1 stability and oligomerization. Perturbing Tg in Drosophila SCA1 models modulated mutant ATXN1 toxicity. Moreover, TG5 was enriched in the nuclei of SCA1-affected neurons and colocalized with nuclear ATXN1 inclusions in brain tissue from patients with SCA1. Our work provides a molecular insight into SCA1 pathogenesis and an opportunity for allele-specific targeting for neurodegenerative disorders.


Transcriptomic Analysis of Mouse Cochlear Supporting Cell Maturation Reveals Large-Scale Changes in Notch Responsiveness Prior to the Onset of Hearing.

  • Juan C Maass‎ et al.
  • PloS one‎
  • 2016‎

Neonatal mouse cochlear supporting cells have a limited ability to divide and trans-differentiate into hair cells, but this ability declines rapidly in the two weeks after birth. This decline is concomitant with the morphological and functional maturation of the organ of Corti prior to the onset of hearing. However, despite this association between maturation and loss of regenerative potential, little is known of the molecular changes that underlie these events. To identify these changes, we used RNA-seq to generate transcriptional profiles of purified cochlear supporting cells from 1- and 6-day-old mice. We found many significant changes in gene expression during this period, many of which were related to regulation of proliferation, differentiation of inner ear components and the maturation of the organ of Corti prior to the onset of hearing. One example of a change in regenerative potential of supporting cells is their robust production of hair cells in response to a blockade of the Notch signaling pathway at the time of birth, but a complete lack of response to such blockade just a few days later. By comparing our supporting cell transcriptomes to those of supporting cells cultured in the presence of Notch pathway inhibitors, we show that the transcriptional response to Notch blockade disappears almost completely in the first postnatal week. Our results offer some of the first molecular insights into the failure of hair cell regeneration in the mammalian cochlea.


Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models.

  • Qiumin Tan‎ et al.
  • Human molecular genetics‎
  • 2016‎

Splicing regulation is an important step of post-transcriptional gene regulation. It is a highly dynamic process orchestrated by RNA-binding proteins (RBPs). RBP dysfunction and global splicing dysregulation have been implicated in many human diseases, but the in vivo functions of most RBPs and the splicing outcome upon their loss remain largely unexplored. Here we report that constitutive deletion of Rbm17, which encodes an RBP with a putative role in splicing, causes early embryonic lethality in mice and that its loss in Purkinje neurons leads to rapid degeneration. Transcriptome profiling of Rbm17-deficient and control neurons and subsequent splicing analyses using CrypSplice, a new computational method that we developed, revealed that more than half of RBM17-dependent splicing changes are cryptic. Importantly, RBM17 represses cryptic splicing of genes that likely contribute to motor coordination and cell survival. This finding prompted us to re-analyze published datasets from a recent report on TDP-43, an RBP implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as it was demonstrated that TDP-43 represses cryptic exon splicing to promote cell survival. We uncovered a large number of TDP-43-dependent splicing defects that were not previously discovered, revealing that TDP-43 extensively regulates cryptic splicing. Moreover, we found a significant overlap in genes that undergo both RBM17- and TDP-43-dependent cryptic splicing repression, many of which are associated with survival. We propose that repression of cryptic splicing by RBPs is critical for neuronal health and survival. CrypSplice is available at www.liuzlab.org/CrypSplice.


Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data.

  • Linhua Wang‎ et al.
  • Nature communications‎
  • 2022‎

Spatially resolved transcriptomics is a relatively new technique that maps transcriptional information within a tissue. Analysis of these datasets is challenging because gene expression values are highly sparse due to dropout events, and there is a lack of tools to facilitate in silico detection and annotation of regions based on their molecular content. Therefore, we develop a computational tool for detecting molecular regions and region-based Missing value Imputation for Spatially Transcriptomics (MIST). We validate MIST-identified regions across multiple datasets produced by 10x Visium Spatial Transcriptomics, using manually annotated histological images as references. We benchmark MIST against a spatial k-nearest neighboring baseline and other imputation methods designed for single-cell RNA sequencing. We use holdout experiments to demonstrate that MIST accurately recovers spatial transcriptomics missing values. MIST facilitates identifying intra-tissue heterogeneity and recovering spatial gene-gene co-expression signals. Using MIST before downstream analysis thus provides unbiased region detections to facilitate annotations with the associated functional analyses and produces accurately denoised spatial gene expression profiles.


Integrated analysis of the aging brain transcriptome and proteome in tauopathy.

  • Carl Grant Mangleburg‎ et al.
  • Molecular neurodegeneration‎
  • 2020‎

Tau neurofibrillary tangle pathology characterizes Alzheimer's disease and other neurodegenerative tauopathies. Brain gene expression profiles can reveal mechanisms; however, few studies have systematically examined both the transcriptome and proteome or differentiated Tau- versus age-dependent changes.


The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells.

  • Igor L Bado‎ et al.
  • Developmental cell‎
  • 2021‎

Estrogen receptor-positive (ER+) breast cancer exhibits a strong bone tropism in metastasis. How the bone microenvironment (BME) impacts ER signaling and endocrine therapy remains poorly understood. Here, we discover that the osteogenic niche transiently and reversibly reduces ER expression and activities specifically in bone micrometastases (BMMs), leading to endocrine resistance. As BMMs progress, the ER reduction and endocrine resistance may partially recover in cancer cells away from the osteogenic niche, creating phenotypic heterogeneity in macrometastases. Using multiple approaches, including an evolving barcoding strategy, we demonstrated that this process is independent of clonal selection, and represents an EZH2-mediated epigenomic reprogramming. EZH2 drives ER+ BMMs toward a basal and stem-like state. EZH2 inhibition reverses endocrine resistance. These data exemplify how epigenomic adaptation to BME promotes phenotypic plasticity of metastatic seeds, fosters intra-metastatic heterogeneity, and alters therapeutic responses. Our study provides insights into the clinical enigma of ER+ metastatic recurrences despite endocrine therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: