Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers.

  • Haiyang Yu‎ et al.
  • Nature communications‎
  • 2014‎

Leukaemia inhibitory factor (LIF) has been recently identified as a p53 target gene, which mediates the role of p53 in maternal implantation under normal physiological conditions. Here we report that LIF is a negative regulator of p53; LIF downregulates p53 protein levels and function in human colorectal cancer (CRC) cells. The downregulation of p53 by LIF is mediated by the activation of Stat3, which transcriptionally induces inhibitor of DNA-binding 1 (ID1). ID1 upregulates MDM2, a key negative regulator of p53, and promotes p53 protein degradation. LIF is overexpressed in a large percentage of CRCs. LIF overexpression promotes cellular resistance towards chemotherapeutic agents in cultured CRC cells and colorectal xenograft tumours in a largely p53-dependent manner. Overexpression of LIF is associated with a poor prognosis in CRC patients. Taken together, LIF is a novel negative regulator of p53, overexpression of LIF is an important mechanism for the attenuation of p53, which promotes chemoresistance in CRCs.


Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression.

  • Juan Liu‎ et al.
  • Nature communications‎
  • 2017‎

Mutations in E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Accumulating evidence suggests that Parkin is a tumor suppressor, but the underlying mechanism is poorly understood. Here we show that Parkin is an E3 ubiquitin ligase for hypoxia-inducible factor 1α (HIF-1α). Parkin interacts with HIF-1α and promotes HIF-1α degradation through ubiquitination, which in turn inhibits metastasis of breast cancer cells. Parkin downregulation in breast cancer cells promotes metastasis, which can be inhibited by targeting HIF-1α with RNA interference or the small-molecule inhibitor YC-1. We further identify lysine 477 (K477) of HIF-1α as a major ubiquitination site for Parkin. K477R HIF-1α mutation and specific cancer-associated Parkin mutations largely abolish the functions of Parkin to ubiquitinate HIF-1α and inhibit cancer metastasis. Importantly, Parkin expression is inversely correlated with HIF-1α expression and metastasis in breast cancer. Our results reveal an important mechanism for Parkin in tumor suppression and HIF-1α regulation.


Identification, validation, and targeting of the mutant p53-PARP-MCM chromatin axis in triple negative breast cancer.

  • Wei-Gang Qiu‎ et al.
  • NPJ breast cancer‎
  • 2017‎

Over 80% of triple negative breast cancers express mutant p53. Mutant p53 often gains oncogenic function suggesting that triple negative breast cancers may be driven by p53 protein type. To determine the chromatin targets of this gain-of-function mutant p53 we used inducible knockdown of endogenous gain-of-function mtp53 in MDA-MB-468 cells in conjunction with stable isotope labeling with amino acids in cell culture and subcellular fractionation. We sequenced over 70,000 total peptides for each corresponding reciprocal data set and were able to identify 3010 unique cytoplasmic fraction proteins and 3403 unique chromatin fraction proteins. The present proteomics experiment corroborated our previous experiment-based results that poly ADP-ribose polymerase has a positive association with mutant p53 on the chromatin. Here, for the first time we report that the heterohexomeric minichromosome maintenance complex that participates in DNA replication initiation ranked as a high mutant p53-chromatin associated pathway. Enrichment analysis identified the minichromosome maintenance members 2-7. To validate this mutant p53- poly ADP-ribose polymerase-minichromosome maintenance functional axis, we experimentally depleted R273H mutant p53 and found a large reduction of the amount of minichromosome maintenance complex proteins on the chromatin. Furthermore a mutant p53-minichromosome maintenance 2 direct interaction was detected. Overexpressed mutant p53, but not wild type p53, showed a protein-protein interaction with minichromosome maintenance 2 and minichromosome maintenance 4. To target the mutant p53- poly ADP-ribose polymerase-minichromosome maintenance axis we treated cells with the poly ADP-ribose polymerase inhibitor talazoparib and the alkylating agent temozolomide and detected synergistic activation of apoptosis only in the presence of mutant p53. Furthermore when minichromosome maintenance 2-7 activity was inhibited the synergistic activation of apoptosis was blocked. This mutant p53- poly ADP-ribose polymerase -minichromosome maintenance axis may be useful for theranostics.


Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour.

  • Yuhan Zhao‎ et al.
  • Plant biotechnology journal‎
  • 2020‎

Peanut (Arachis hypogaea. L) is an important oil crop worldwide. The common testa colours of peanut varieties are pink or red. But the peanut varieties with dark purple testa have been focused in recent years due to the potential high levels of anthocyanin, an added nutritional value of antioxidant. However, the genetic mechanism regulating testa colour of peanut is unknown. In this study, we found that the purple testa was decided by the female parent and controlled by a single major gene named AhTc1. To identify the candidate gene controlling peanut purple testa, whole-genome resequencing-based approach (QTL-seq) was applied, and a total of 260.9 Gb of data were generated from the parental and bulked lines. SNP index analysis indicated that AhTc1 located in a 4.7 Mb region in chromosome A10, which was confirmed by bulked segregant RNA sequencing (BSR) analysis in three segregation populations derived from the crosses between pink and purple testa varieties. Allele-specific markers were developed and demonstrated that the marker pTesta1089 was closely linked with purple testa. Further, AhTc1 encoding a R2R3-MYB gene was positional cloned. The expression of AhTc1 was significantly up-regulated in the purple testa parent YH29. Overexpression of AhTc1 in transgenic tobacco plants led to purple colour of leaves, flowers, pods and seeds. In conclusion, AhTc1, encoding a R2R3-MYB transcription factor and conferring peanut purple testa, was identified, which will be useful for peanut molecular breeding selection for cultivars with purple testa colour for potential increased nutritional value to consumers.


Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma.

  • Juan Liu‎ et al.
  • Oncotarget‎
  • 2014‎

The tumor suppressor p53 and its signaling pathway play a critical role in tumor prevention. As a direct p53 target gene, the role of glutaminase 2 (GLS2) in tumorigenesis is unclear. In this study, we found that GLS2 expression is significantly decreased in majority of human hepatocellular carcinoma (HCC). Restoration of GLS2 expression in HCC cells inhibits the anchorage-independent growth of cells and reduces the growth of HCC xenograft tumors. Interestingly, we found that GLS2 negatively regulates the PI3K/AKT signaling, which is frequently activated in HCC. Blocking the PI3K/AKT signaling in HCC cells largely abolishes the inhibitory effect of GLS2 on the anchorage-independent cell growth and xenograft tumor growth. The GLS2 promoter is hypermethylated in majority of HCC samples. CpG methylation of GLS2 promoter inhibits GLS2 transcription, whereas reducing the methylation of GLS2 promoter induces GLS2 expression. Taken together, our results demonstrate that GLS2 plays an important role in tumor suppression in HCC, and the negative regulation of PI3K/AKT signaling contributes greatly to this function of GLS2. Furthermore, hypermethylation of GLS2 promoter is an important mechanism contributing to the decreased GLS2 expression in HCC.


Combined small RNA and gene expression analysis revealed roles of miRNAs in maize response to rice black-streaked dwarf virus infection.

  • Aiqin Li‎ et al.
  • Scientific reports‎
  • 2018‎

Maize rough dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a devastating disease in maize (Zea mays L.). MicroRNAs (miRNAs) are known to play critical roles in regulation of plant growth, development, and adaptation to abiotic and biotic stresses. To elucidate the roles of miRNAs in the regulation of maize in response to RBSDV, we employed high-throughput sequencing technology to analyze the miRNAome and transcriptome following RBSDV infection. A total of 76 known miRNAs, 226 potential novel miRNAs and 351 target genes were identified. Our dataset showed that the expression patterns of 81 miRNAs changed dramatically in response to RBSDV infection. Transcriptome analysis showed that 453 genes were differentially expressed after RBSDV infection. GO, COG and KEGG analysis results demonstrated that genes involved with photosynthesis and metabolism were significantly enriched. In addition, twelve miRNA-mRNA interaction pairs were identified, and six of them were likely to play significant roles in maize response to RBSDV. This study provided valuable information for understanding the molecular mechanism of maize disease resistance, and could be useful in method development to protect maize against RBSDV.


Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

  • Xuetian Yue‎ et al.
  • Genes & development‎
  • 2017‎

Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53.


Metadherin mediates lipopolysaccharide-induced migration and invasion of breast cancer cells.

  • Yuhan Zhao‎ et al.
  • PloS one‎
  • 2011‎

Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive.


Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression.

  • Cen Zhang‎ et al.
  • Genes & development‎
  • 2016‎

Increased lipid synthesis is a key characteristic of many cancers that is critical for cancer progression. ATP-citrate lyase (ACLY), a key enzyme for lipid synthesis, is frequently overexpressed or activated in cancer to promote lipid synthesis and tumor progression. Cullin3 (CUL3), a core protein for the CUL3-RING ubiquitin ligase complex, has been reported to be a tumor suppressor and frequently down-regulated in lung cancer. Here, we found that CUL3 interacts with ACLY through its adaptor protein, KLHL25 (Kelch-like family member 25), to ubiquitinate and degrade ACLY in cells. Through negative regulation of ACLY, CUL3 inhibits lipid synthesis, cell proliferation, and xenograft tumor growth of lung cancer cells. Furthermore, ACLY inhibitor SB-204990 greatly abolishes the promoting effect of CUL3 down-regulation on lipid synthesis, cell proliferation, and tumor growth. Importantly, low CUL3 expression is associated with high ACLY expression and poor prognosis in human lung cancer. In summary, our results identify CUL3-KLHL25 ubiquitin ligase as a novel negative regulator for ACLY and lipid synthesis and demonstrate that decreased CUL3 expression is an important mechanism for increased ACLY expression and lipid synthesis in lung cancer. These results also reveal that negative regulation of ACLY and lipid synthesis is a novel and critical mechanism for CUL3 in tumor suppression.


Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells.

  • Ruiran Wei‎ et al.
  • International journal of biological sciences‎
  • 2021‎

Rationale: Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression. Methods: The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well. Results: Tagitinin C, a sesquiterpene lactone isolated from Tithonia diversifolia, inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin. Conclusion: In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.


Characterization of 2 Novel Phosphodiesterase 2 Inhibitors Hcyb1 and PF-05180999 on Depression- and Anxiety-Like Behavior.

  • Yuqing Yan‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2023‎

Phosphodiesterase 2A (PDE2A) represents a novel target for new therapies addressing psychiatric disorders. To date, the development of PDE2A inhibitors suitable for human clinical evaluation has been hampered by the poor brain accessibility and metabolic stability of the available compounds.


BAG2 promotes tumorigenesis through enhancing mutant p53 protein levels and function.

  • Xuetian Yue‎ et al.
  • eLife‎
  • 2015‎

Tumor suppressor p53 is the most frequently mutated gene in tumors. Many mutant p53 (mutp53) proteins promote tumorigenesis through the gain-of-function (GOF) mechanism. Mutp53 proteins often accumulate to high levels in tumors, which is critical for mutp53 GOF. Its underlying mechanism is poorly understood. Here, we found that BAG2, a protein of Bcl-2 associated athanogene (BAG) family, promotes mutp53 accumulation and GOF in tumors. Mechanistically, BAG2 binds to mutp53 and translocates to the nucleus to inhibit the MDM2-mutp53 interaction, and MDM2-mediated ubiquitination and degradation of mutp53. Thus, BAG2 promotes mutp53 accumulation and GOF in tumor growth, metastasis and chemoresistance. BAG2 is frequently overexpressed in tumors. BAG2 overexpression is associated with poor prognosis in patients and mutp53 accumulation in tumors. These findings revealed a novel and important mechanism for mutp53 accumulation and GOF in tumors, and also uncovered an important role of BAG2 in tumorigenesis through promoting mutp53 accumulation and GOF.


Tumour-associated mutant p53 drives the Warburg effect.

  • Cen Zhang‎ et al.
  • Nature communications‎
  • 2013‎

Tumour cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect. Its mechanism is not well understood. The tumour suppressor gene p53 is frequently mutated in tumours. Many tumour-associated mutant p53 (mutp53) proteins not only lose tumour suppressive function but also gain new oncogenic functions that are independent of wild-type p53, defined as mutp53 gain of function (GOF). Here we show that tumour-associated mutp53 stimulates the Warburg effect in cultured cells and mutp53 knockin mice as a new mutp53 GOF. Mutp53 stimulates the Warburg effect through promoting GLUT1 translocation to the plasma membrane, which is mediated by activated RhoA and its downstream effector ROCK. Inhibition of RhoA/ROCK/GLUT1 signalling largely abolishes mutp53 GOF in stimulating the Warburg effect. Furthermore, inhibition of glycolysis in tumour cells greatly compromises mutp53 GOF in promoting tumorigenesis. Thus, our results reveal a new mutp53 GOF and a mechanism for controlling the Warburg effect.


LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway.

  • Xiaoyan Li‎ et al.
  • Oncotarget‎
  • 2014‎

Leukemia inhibitory factor (LIF) is a multi-functional cytokine protein. The role of LIF in tumorigenesis is not well-understood. Here, we found that LIF promotes tumorigenesis and metastasis of breast cancer. LIF promotes cell proliferation and anchorage-independent growth of breast cancer cells in vitro, and the growth of xenograft breast tumors in vivo. LIF also promotes invasion and migration of breast cancer cells in vitro and metastasis of breast cancer in vivo. We found that LIF activates the AKT-mTOR signaling pathway to promote tumorigenesis and metastasis of breast cancer. Inhibiting the AKT activity can largely block the activation of the mTOR pathway by LIF, suggesting that LIF activates the mTOR pathway through AKT. Inhibiting the AKT activity as well as inhibiting the mTOR activity largely block the promoting effect of LIF on tumorigenesis and metastasis. Furthermore, overexpression of LIF is significantly associated with a poorer relapse free survival in breast cancer patients. Taken together, our data strongly suggest that LIF plays an important role in the tumorigenesis and metastasis of breast cancer, and could be an important prognostic marker for breast cancer.


Effect of Multiple Freeze-Thaw Cycles on Lipid Degradation and Lipid Oxidation of Grass Carp Surimi Containing Different Amounts of Pork Back Fat.

  • Xiaolan Shang‎ et al.
  • Food science of animal resources‎
  • 2021‎

Fresh grass carp was used to produce surimi samples that were supplemented with 50 g/kg, 100 g/kg, or 150 g/kg pork back fat. The lipid composition, lipase activity, lipid oxidation index, and lipoxygenase activity of samples subjected to repeated freeze-thaw process were determined to assess the effects of the added fat on lipolysis and lipid oxidation of grass carp surimi. Freeze-thaw treatment increased free fatty acid content, mainly due to the decomposition of phospholipids and some neutral lipids by lipase. With repeated freeze-thaw treatment, the levels of free fatty acids and phospholipids were correlated with the lipid oxidation indexes and lipoxygenase activity, indicating that lipid degradation can promote lipid oxidation. In the same freeze-thaw cycle, surimi products with high fat content are more vulnerable to oxidative damage, neutral lipids are the main source of free fatty acids in the early stage of freeze-thaw, and phospholipids are the main source of free fatty acids in the late stage.


Identification of active natural products that induce lysosomal biogenesis by lysosome-based screening and biological evaluation.

  • Xiao Ding‎ et al.
  • Heliyon‎
  • 2022‎

Lysosomal biogenesis is an essential adaptive process by which lysosomes exert their function in maintaining cellular homeostasis. Defects in lysosomal enzymes and functions lead to lysosome-related diseases, including lysosomal storage diseases and neurodegenerative disorders. Thus, activation of the autophagy-lysosomal pathway, especially induction of lysosomal biogenesis, might be an effective strategy for the treatment of lysosome-related diseases. In this study, we established a lysosome-based screening system to identify active compounds from natural products that could promote lysosomal biogenesis. The subcellular localizations of master transcriptional regulators of lysosomal genes, TFEB, TFE3 and ZKSCAN3 were examined to reveal the potential mechanisms. More than 200 compounds were screened, and we found that Hdj-23, a triterpene isolated from Walsura cochinchinensis, induced lysosomal biogenesis via activation of TFEB/TFE3. In summary, this study introduced a lysosome-based live cell screening strategy to identify bioactive compounds that promote lysosomal biogenesis, which would provide potential candidate enhancers of lysosomal biogenesis and novel insight for treating lysosome-related diseases.


HDAC5 Loss Enhances Phospholipid-Derived Arachidonic Acid Generation and Confers Sensitivity to cPLA2 Inhibition in Pancreatic Cancer.

  • Penglin Pan‎ et al.
  • Cancer research‎
  • 2022‎

HDAC5 is a class IIa histone deacetylase member that is downregulated in multiple solid tumors, including pancreatic cancer, and loss of HDAC5 is associated with unfavorable prognosis. In this study, assessment of The Cancer Genome Atlas pancreatic adenocarcinoma dataset revealed that expression of HDAC5 correlates negatively with arachidonic acid (AA) metabolism, which has been implicated in inflammatory responses and cancer progression. Nontargeted metabolomics analysis revealed that HDAC5 knockdown resulted in a significant increase in AA and its downstream metabolites, such as eicosanoids and prostaglandins. HDAC5 negatively regulated the expression of the gene encoding calcium-dependent phospholipase A2 (cPLA2), the key enzyme in the production of AA from phospholipids. Mechanistically, HDAC5 repressed cPLA2 expression via deacetylation of GATA1. HDAC5 knockdown in cancer cells enhanced sensitivity to genetic or pharmacologic inhibition of cPLA2 in vitro and in vivo. Fatty acid supplementation in the diet reversed the sensitivity of HDAC5-deficient tumors to cPLA2 inhibition. These data indicate that HDAC5 loss in pancreatic cancer results in the hyperacetylation of GATA1, enabling the upregulation of cPLA2, which contributes to overproduction of AA. Dietary management plus cPLA2-targeted therapy could serve as a viable strategy for treating HDAC5-deficient pancreatic cancer patients.


Genetic and stochastic influences upon tumor formation and tumor types in Li-Fraumeni mouse models.

  • Chang S Chan‎ et al.
  • Life science alliance‎
  • 2021‎

p53 is the most frequently mutated gene in human cancers. Li-Fraumeni syndrome patients inheriting heterozygous p53 mutations often have a much-increased risk to develop cancer(s) at early ages. Recent studies suggest that some individuals inherited p53 mutations do not have the early onset or high frequency of cancers. These observations suggest that other genetic, environmental, immunological, epigenetic, or stochastic factors modify the penetrance of the cancerous mutant Tp53 phenotype. To test this possibility, this study explored dominant genetic modifiers of Tp53 mutations in heterozygous mice with different genetic backgrounds. Both genetic and stochastic effects upon tumor formation were observed in these mice. The genetic background of mice carrying Tp53 mutations has a strong influence upon the tissue type of the tumor produced and the number of tumors formed in a single mouse. The onset age of a tumor is correlated with the tissue type of that tumor, although identical tumor tissue types can occur at very different ages. These observations help to explain the great diversity of cancers in different Li-Fraumeni patients over lifetimes.


Combined Activity of Saponin B Isolated from Dodonaea viscosa Seeds with Pesticide Azadirachtin against the Pest Spodoptera litura.

  • Hang Yu‎ et al.
  • Metabolites‎
  • 2023‎

Azadirachtin is regarded as one of the best botanical pesticides due to its broad spectrum of insecticides and low interference with natural enemies. To enhance the effect of azadirachtin and slow down the generation of resistance, the combined activity was studied. Here, we found that Dodonaea viscosa saponin B (DVSB) isolated from the seeds of Dodonaea viscosa has good combined activity with the azadirachtin. The mixture of DVSB and azadirachtin in a volume ratio of 1:4 had the strongest combined effect against Spodoptera litura, with a co-toxicity coefficient (CTC) of 212.87. DVSB exerted its combined activity by affecting the contact angle, surface tension, maximum retention and cell membrane permeability. When mixed with DVSB, the contact angle and surface tension decreased by 30.38% and 23.68%, and the maximum retention increased by 77.15%. DVSB was screened as an effective combined activity botanical compound of azadirachtin upon the control of S. litura and highlights the potential application of botanical compounds as pesticide adjuvants in the pest management.


Spliced MDM2 isoforms promote mutant p53 accumulation and gain-of-function in tumorigenesis.

  • Tongsen Zheng‎ et al.
  • Nature communications‎
  • 2013‎

The tumour suppressor p53 is frequently mutated in tumours. Mutant p53 (Mutp53) proteins often gain new activities in promoting tumorigenesis, defined as gain-of-function (GOF). Mutp53 can accumulate to high levels in tumours, which promotes mutp53 GOF in tumorigenesis. The mechanism of mutp53 accumulation is poorly understood. Here we find that MDM2 isoforms promote mutp53 accumulation in tumours. MDM2 isoform B (MDM2-B), the MDM2 isoform most frequently over-expressed in human tumours, interacts with full-length MDM2 to inhibit MDM2-mediated mutp53 degradation, promoting mutp53 accumulation and GOF in tumorigenesis. Furthermore, MDM2-B overexpression correlates with mutp53 accumulation in human tumours. In mutp53 knock-in mice, a MDM2 isoform similar to human MDM2-B is overexpressed in the majority of tumours, which promotes mutp53 accumulation and tumorigenesis. Thus, overexpression of MDM2 isoforms promotes mutp53 accumulation in tumours, contributing to mutp53 GOF in tumorigenesis. This may be an important mechanism by which MDM2 isoforms promote tumorigenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: