Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 147 papers

A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans.

  • Giovanni Stefani‎ et al.
  • RNA (New York, N.Y.)‎
  • 2015‎

The evolutionarily conserved gene lin-28 encodes an RNA-binding protein and is an important regulator of the proper temporal succession of several developmental events in both invertebrates and vertebrates. At the cellular level, LIN-28 promotes stemness and proliferation, and inhibits differentiation, a feature best illustrated by its ability to induce pluripotency when ectopically expressed in human fibroblasts in combination with NANOG, OCT4, and SOX2. Mammalian LIN28 functions in part by regulating processing of the let-7 microRNA through a GGAG binding site in the pre-let-7's distal loop region. However, many human and animal let-7 precursors lack the GGAG binding motif. In order to dissect the molecular mechanisms underlying its biological functions in a living animal, we identified a map of LIN-28 interactions with the transcriptome by in vivo HITS-CLIP in Caenorhabditis elegans. LIN-28 binds a large pool of messenger RNAs, and a substantial fraction of the bona fide LIN-28 targets are involved in aspects of animal development. Furthermore, our data show that LIN-28 regulates the expression of the let-7 microRNA by binding its primary transcript in a previously unknown region, revealing a novel regulatory mechanism.


A penalized linear mixed model for genomic prediction using pedigree structures.

  • Can Yang‎ et al.
  • BMC proceedings‎
  • 2014‎

Genetic Analysis Workshop 18 provided a platform for evaluating genomic prediction power based on single-nucleotide polymorphisms from single-nucleotide polymorphism array data and sequencing data. Also, Genetic Analysis Workshop 18 provided a diverse pedigree structure to be explored in prediction. In this study, we attempted to combine pedigree information with single-nucleotide polymorphism data to predict systolic blood pressure. Our results suggested that the prediction power based on pedigree information only could be unsatisfactory. Using additional information such as single-nucleotide polymorphism genotypes would improve prediction accuracy. In particular, the improvement can be significant when there exist a few single-nucleotide polymorphisms with relatively larger effect sizes. We also compared the prediction performance based on genome-wide association study data (ie, common variants) and sequencing data (ie, common variants plus low-frequency variants). The experimental result showed that inclusion of low frequency variants could not lead to improvement of prediction accuracy.


Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

  • Anupam Paliwal‎ et al.
  • PLoS genetics‎
  • 2013‎

Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.


LncRNA16 is a potential biomarker for diagnosis of early-stage lung cancer that promotes cell proliferation by regulating the cell cycle.

  • Huange Zhu‎ et al.
  • Oncotarget‎
  • 2017‎

Early diagnosis of lung cancer greatly reduces mortality; however, the lack of suitable plasma biomarkers presents a major obstacle. Recent studies showed that long noncoding RNAs (lncRNAs) played important roles in cancer initiation and development. Here, we identified differentially expressed lncRNAs in 20 lung cancer samples by using custom designed microarray and evaluated their expression in 118 lung cancer samples by real-time PCR (qRT-PCR). lncRNA16 (ENST00000539303) expression was significantly higher in lung cancer tissues (80/118) than in adjacent matched normal tissues. Importantly, this increase was similar to that in plasma (53/84) of lung cancer patients, including early stage. The role of lncRNA16 in lung cancer was studied in vitro and in vivo by using the lung cancer cell lines and xenograft mouse models. The results reveal that knockdown of lncRNA16 inhibited proliferation of PC9 cells in vitro and also inhibited tumor growth in xenograft mouse models. Overexpression of lncRNA16 promoted proliferation of A549 cells in vitro and also promoted tumor growth in xenograft mouse models. Specifically, we showed that lncRNA16 promoted G2/M transition by regulating cyclin B1 transcription. Together, our findings suggest that lncRNA16 is a promising biomarker suitable for early diagnosis of lung cancer, and a potential target for lung cancer treatment.


Identifying breast cancer risk loci by global differential allele-specific expression (DASE) analysis in mammary epithelial transcriptome.

  • Chuan Gao‎ et al.
  • BMC genomics‎
  • 2012‎

The significant mortality associated with breast cancer (BCa) suggests a need to improve current research strategies to identify new genes that predispose women to breast cancer. Differential allele-specific expression (DASE) has been shown to contribute to phenotypic variables in humans and recently to the pathogenesis of cancer. We previously reported that nonsense-mediated mRNA decay (NMD) could lead to DASE of BRCA1/2, which is associated with elevated susceptibility to breast cancer. In addition to truncation mutations, multiple genetic and epigenetic factors can contribute to DASE, and we propose that DASE is a functional index for cis-acting regulatory variants and pathogenic mutations, and that global analysis of DASE in breast cancer precursor tissues can be used to identify novel causative alleles for breast cancer susceptibility.


Transcriptome-wide analysis of TDP-43 binding small RNAs identifies miR-NID1 (miR-8485), a novel miRNA that represses NRXN1 expression.

  • Zhen Fan‎ et al.
  • Genomics‎
  • 2014‎

The Tar DNA-binding protein 43 (TARDBP, TDP-43) regulates RNA processing and miRNA biogenesis and is known to be involved in neurodegeneration. Messenger RNA (mRNA) targets of TDP-43 have recently been systematically identified, but small RNAs (sRNAs) bound by TDP-43 have not been studied in details. Here, we reexamine cross-linking, immunoprecipitation and sequencing (CLIP-seq) data, and identify pre-miRNAs, miRNAs and piRNAs bound by TDP-43 in human and mouse brains. Subsequent analysis of TDP-43 binding miRNAs suggests that target genes are enriched in functions involving synaptic activities. We further identify a novel miRNA (miR-NID1) processed from the intron 5 of human neurexin 1, NRXN1, and show that miR-NID1 represses NRXN1 expression by binding to TDP-43. Our results are in accordance with previously published data indicating TDP-43 through binding of specific miRNAs to play roles in neurodevelopmental activities and neurological disorders and further our understanding of TDP-43 function.


IL-17 producing mast cells promote the expansion of myeloid-derived suppressor cells in a mouse allergy model of colorectal cancer.

  • Xiaowei Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Food allergy can influence the development of colorectal cancer, although the underlying mechanisms are unclear. While mast cells (MC) store and secrete histamine, immature myeloid cells (IMC) are the major site of histidine decarboxylase (HDC) expression, the enzyme responsible for histamine production. From our earlier work, we hypothesized that histamine is central to the association between allergy and colorectal carcinogenesis through its influence on the MC-MDSC axis. Here, we show that in wild type (WT) mice, ovalbumin (OVA) immunization elicits a typical TH2 response. In contrast, in HDC-/- mice, the response to OVA allergy is skewed towards infiltration by IL-17 expressing MCs. This response is inhibited by histamine treatment. The HDC-/- allergic IL-17-expressing MCs promote MDSC proliferation and upregulation of Cox-2 and Arg-1. OVA allergy in HDC-/- mice increases the growth of colon tumor cells in both the MC38 tumor cell implantation model and the AOM/DSS carcinogenesis model. Taken together, our results show that histamine represses IL-17-expressing MCs and their subsequent activation of MDSCs, attenuating the risk of colorectal cancer in the setting of food allergy. Targeting the MC-MDSC axis may be useful for cancer prevention and treatment in patients, particularly in those with food allergy.


Synaptic dynamics and neuronal network connectivity are reflected in the distribution of times in Up states.

  • Khanh Dao Duc‎ et al.
  • Frontiers in computational neuroscience‎
  • 2015‎

The dynamics of neuronal networks connected by synaptic dynamics can sustain long periods of depolarization that can last for hundreds of milliseconds such as Up states recorded during sleep or anesthesia. Yet the underlying mechanism driving these periods remain unclear. We show here within a mean-field model that the residence time of the neuronal membrane potential in cortical Up states does not follow a Poissonian law, but presents several peaks. Furthermore, the present modeling approach allows extracting some information about the neuronal network connectivity from the time distribution histogram. Based on a synaptic-depression model, we find that these peaks, that can be observed in histograms of patch-clamp recordings are not artifacts of electrophysiological measurements, but rather are an inherent property of the network dynamics. Analysis of the equations reveals a stable focus located close to the unstable limit cycle, delimiting a region that defines the Up state. The model further shows that the peaks observed in the Up state time distribution are due to winding around the focus before escaping from the basin of attraction. Finally, we use in vivo recordings of intracellular membrane potential and we recover from the peak distribution, some information about the network connectivity. We conclude that it is possible to recover the network connectivity from the distribution of times that the neuronal membrane voltage spends in Up states.


The novel long non-coding RNA CRG regulates Drosophila locomotor behavior.

  • Meixia Li‎ et al.
  • Nucleic acids research‎
  • 2012‎

Long non-coding RNAs (lncRNAs) that have no protein-coding capacity make up a large proportion of the transcriptome of various species. Many lncRNAs are expressed within the animal central nervous system in spatial- and temporal-specific patterns, indicating that lncRNAs play important roles in cellular processes, neural development, and even in cognitive and behavioral processes. However, relatively little is known about their in vivo functions and underlying molecular mechanisms in the nervous system. Here, we report a neural-specific Drosophila lncRNA, CASK regulatory gene (CRG), which participates in locomotor activity and climbing ability by positively regulating its neighboring gene CASK (Ca(2+)/calmodulin-dependent protein kinase). CRG deficiency led to reduced locomotor activity and a defective climbing ability-phenotypes that are often seen in CASK mutant. CRG mutant also showed reduced CASK expression level while CASK over-expression could rescue the CRG mutant phenotypes in reciprocal. At the molecular level, CRG was required for the recruitment of RNA polymerase II to the CASK promoter regions, which in turn enhanced CASK expression. Our work has revealed new functional roles of lncRNAs and has provided insights to explore the pathogenesis of neurological diseases associated with movement disorders.


Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity.

  • Longqi Liu‎ et al.
  • Nature communications‎
  • 2019‎

Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a technique for simultaneously assaying chromatin accessibility and the transcriptome within the same single cell. We show that the combined single cell signatures enable accurate construction of regulatory relationships between cis-regulatory elements and the target genes at single-cell resolution, providing a new dimension of features that helps direct discovery of regulatory patterns specific to distinct cell identities. Moreover, we generate the first single cell integrated map of chromatin accessibility and transcriptome in early embryos and demonstrate the robustness of scCAT-seq in the precise dissection of master transcription factors in cells of distinct states. The ability to obtain these two layers of omics data will help provide more accurate definitions of "single cell state" and enable the deconvolution of regulatory heterogeneity from complex cell populations.


Electrophysiological characteristics of pressure overload-induced cardiac hypertrophy and its influence on ventricular arrhythmias.

  • Xiaowei Chen‎ et al.
  • PloS one‎
  • 2017‎

To explore the cardiac electrophysiological characteristics of cardiac hypertrophy and its influence on the occurrence of ventricular tachyarrhythmias.


A Visual-Cue-Dependent Memory Circuit for Place Navigation.

  • Han Qin‎ et al.
  • Neuron‎
  • 2018‎

The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation.


Predictors of the survival of patients with chondrosarcoma of bone and metastatic disease at diagnosis.

  • Zhan Wang‎ et al.
  • Journal of Cancer‎
  • 2019‎

Purpose: Chondrosarcoma with metastatic disease has a very poor prognosis. However, the prognosis and potential prognostic factors of patients with primary chondrosarcoma of bone and metastasis at presentation have not been documented because of its rarity. Therefore, we examined the prognosis of this special cohort and identify possible prognostic factors. Methods: The Surveillance, Epidemiology, and End Results (SEER) program database was used to identify patients with primary chondrosarcoma of bone and metastatic disease at diagnosis from 2000 to 2013. The prognostic analysis was performed using the Kaplan-Meier method and a Cox proportional hazards regression model. Results: The SEER database contained 264 cases. The overall survival (OS) and cancer-survival specific (CSS) rates of the entire group at 5 years were 28.4% and 31.2%, respectively. The median OS and CSS were 14.0 ± 2.5 and 17.0 ± 2.6 months, respectively. Multivariate analysis revealed that low tumor grade, surgical treatment, tumor size < 10 cm, and first primary tumor were associated with improved OS. Tumor grade, tumor size, and surgery were independent predictors of CSS. Radiation therapy had no effect on either OS or CSS. Conclusion: Among patients with primary chondrosarcoma of bone and metastasis at presentation, low tumor grade, surgical treatment, tumor size < 10 cm, and first primary tumor predict prolonged survival.


Fast Green FCF Attenuates Lipopolysaccharide-Induced Depressive-Like Behavior and Downregulates TLR4/Myd88/NF-κB Signal Pathway in the Mouse Hippocampus.

  • Jing Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Depression is a common neuropsychiatric disorder and new anti-depressive treatments are still in urgent demand. Fast Green FCF, a safe biocompatible color additive, has been suggested to mitigate chronic pain. However, Fast green FCF's effect on depression is unknown. We aimed to investigate Fast green FCF's effect on lipopolysaccharide (LPS)-induced depressive-like behavior and the underlying mechanisms. Pretreatment of Fast green FCF (100 mg/kg, i.p. daily for 7 days) alleviated depressive-like behavior in LPS-treated mice. Fast green FCF suppressed the LPS-induced microglial and astrocyte activation in the hippocampus. Fast green FCF decreased the mRNA and protein levels of Toll-like receptor 4 (TLR4) and Myeloid differentiation primary response 88 (Myd88) and suppressed the phosphorylation of nuclear factor-κB (NF-κB) in the hippocampus of LPS-treated mice. Fast green FCF also downregulated hippocampal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, but did not alter the level of the brain-derived neurotrophic factor (BDNF) in the hippocampus of LPS-treated mice. The molecular docking simulation predicts that Fast green FCF may interact with TLR4 and interrupt the formation of the TLR4-MD2 complex. In conclusion, the anti-depressive action of Fast green FCF in LPS-treated mice may involve the suppression of neuroinflammation and the downregulation of TLR4/Myd88/NF-κB signal pathway in mouse hippocampus. Our findings indicate the potential of Fast green FCF for controlling depressive symptoms.


Target sequencing of 307 deafness genes identifies candidate genes implicated in microtia.

  • Pu Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Microtia is a congenital malformation of the external ear caused by genetic and/or environmental factors. However, no causal genetic mutations have been identified in isolated microtia patients. In this study, we utilized targeted genomic capturing combined with next-generation sequencing to screen for mutations in 307 deafness genes in 32 microtia patients. Forty-two rare heterozygous mutations in 25 genes, including 22 novel mutations in 24 isolated unilateral microtia cases were identified. Pathway analysis found five pathways especially focal adhesion pathway and ECM-receptor interaction pathway were significantly associated with microtia. The low-frequency variants association study was used and highlighted several strong candidate genes MUC4, MUC6, COL4A4, MYO7A, AKAP12, COL11A1, DSPP, ESPN, GPR98, PCDH15, BSN, CACNA1D, TPRN, and USH1C for microtia (P = 2.51 × 10-4). Among these genes, COL4A4 and COL11A1 may lead to microtia through focal adhesion pathway and ECM-receptor interaction pathway which are connected to the downstream Wnt signaling pathway. The present results indicate that certain genes may affect both external/middle and inner ear development, and demonstrate the benefits of using a capture array in microtia patients.


Diverse CBX family members as potential prognostic biomarkers in non-small-cell lung cancer.

  • Xiaobin Xie‎ et al.
  • FEBS open bio‎
  • 2020‎

Chromobox (CBX) family members are vital epigenetic regulators that repress the transcription of target genes through chromatin modification. Several studies have investigated the role of CBX family members in cancer. However, the function and prognostic value of diverse CBX family members in non-small-cell lung cancer remain largely unknown. In this study, we reveal that CBX family members are overexpressed in non-small-cell lung cancer tissue compared with normal lung tissue, with the exception of CBX6. Kaplan-Meier analysis demonstrated that high expressions of CBX1 and CBX3 are correlated with overall survival, disease-specific survival, disease-free interval, and progression-free interval for patients with lung adenocarcinoma (LUAD). Furthermore, regression model analysis suggests that CBX3 may be suitable as an independent prediction factor for overall survival and progression-free interval in patients with LUAD. In addition, CBX3 mRNA expression was found to be associated with tumor diameter and lymph node metastasis. Gene enrichment analysis suggests that CBX3 is involved in the cell cycle and P53 signaling pathways. Aberrant expression of CBX3 in LUAD is correlated with DNA copy number alteration. In summary, our data imply that CBX3 plays an important role in the promotion of LUAD and may thus have potential as a prognostic biomarker and molecular therapeutic target for the disease.


LincIN, a novel NF90-binding long non-coding RNA, is overexpressed in advanced breast tumors and involved in metastasis.

  • Zhengyu Jiang‎ et al.
  • Breast cancer research : BCR‎
  • 2017‎

Recent genome-wide profiling by sequencing and distinctive chromatin signatures has identified thousands of long non-coding RNA (lncRNA) species (>200 nt). LncRNAs have emerged as important regulators of gene expression, involving in both developmental and pathological processes. While altered expression of lncRNAs has been observed in breast cancer development, their roles in breast cancer progression and metastasis are still poorly understood.


Locomotion-Related Population Cortical Ca2+ Transients in Freely Behaving Mice.

  • Quanchao Zhang‎ et al.
  • Frontiers in neural circuits‎
  • 2017‎

Locomotion involves complex neural activity throughout different cortical and subcortical networks. The primary motor cortex (M1) receives a variety of projections from different brain regions and is responsible for executing movements. The primary visual cortex (V1) receives external visual stimuli and plays an important role in guiding locomotion. Understanding how exactly the M1 and the V1 are involved in locomotion requires recording the neural activities in these areas in freely moving animals. Here, we used an optical fiber-based method for the real-time monitoring of neuronal population activities in freely moving mice. We combined the bulk loading of a synthetic Ca2+ indicator and the optical fiber-based Ca2+ recordings of neuronal activities. An optical fiber 200 μm in diameter can detect the coherent activity of a subpopulation of neurons. In layer 5 of the M1 and V1, we showed that population Ca2+ transients reliably occurred preceding the impending locomotion. Interestingly, the M1 Ca2+ transients started ~100 ms earlier than that in V1. Furthermore, the population Ca2+ transients were robustly correlated with head movements. Thus, our work provides a simple but efficient approach for monitoring the cortical Ca2+ activity of a local cluster of neurons during locomotion in freely moving animals.


Elevated Contribution of Low Nucleic Acid Prokaryotes and Viral Lysis to the Prokaryotic Community Along the Nutrient Gradient From an Estuary to Open Ocean Transect.

  • Chen Hu‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Prokaryotes represent the largest living biomass reservoir in aquatic environments and play a crucial role in the global ocean. However, the factors that shape the abundance and potential growth rate of the ecologically distinct prokaryotic subgroups [i.e., high nucleic acid (HNA) and low nucleic acid (LNA) cells] along varying trophic conditions in the ocean remain poorly understood. This study conducted a series of modified dilution experiments to investigate how the abundance and potential growth rate of HNA and LNA prokaryotes and their regulating factors (i.e., protozoan grazing and viral lysis) change along a cross-shore nutrient gradient in the northern South China Sea. The results showed that the abundance of both HNA and LNA cells was significantly positively correlated with the abundance of heterotrophic nanoflagellates and viruses, whereas only HNA abundance exhibited a significant positive correlation with nutrient level. With a decreasing nutrient concentration, the potential growth rate of the HNA subgroup declined significantly, while that of the LNA subgroup was significantly enhanced, leading to an elevated relative potential growth rate of the LNA to HNA subgroup under decreasing nutrient levels. Furthermore, our data revealed different regulatory roles of protozoan grazing and viral lysis on the HNA and LNA subgroups, with HNA suffering higher mortality pressure from grazing than from lysis in contrast to LNA, which experienced equivalent pressures. As the nutrient levels declined, the relative contribution of lysis to the mortality of the HNA subgroup increased significantly, in contrast to the insignificant change in that of the LNA subgroup. Our results indicated the elevated role of LNA cells in the prokaryotic community and the enhanced viral lysis pressure on the total prokaryotes under oligotrophic conditions. This implies a weakened efficiency of carbon cycling within the microbial loop and enhanced viral lysis to shunt more carbon and energy flow in the future ocean, in which oligotrophication will be strengthened due to global warming.


Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine.

  • Yunan Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The establishment and development of a set of methods of oil accurate recognition in a different environment are of great significance to the effective management of oil spill pollution. In this work, the concentration-emission matrix (CEM) is formed by introducing the concentration dimension. The principal component analysis (PCA) is applied to extract the spectral feature. The classification methods, such as Probabilistic Neural Networks (PNNs) and Genic Algorithm optimization Support Vector Machine (SVM) parameters (GA-SVM), are used for oil identification and the recognition accuracies of the two classification methods are compared. The results show that the GA-SVM combined with PCA has the highest recognition accuracy for different oils. The proposed approach has great potential in rapid and accurate oil source identification.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: