Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 72 papers

Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

  • Xiaomeng Liu‎ et al.
  • Endocrinology‎
  • 2015‎

Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT.


Regulation of UCP1 in the Browning of Epididymal Adipose Tissue by β3-Adrenergic Agonist: A Role for MicroRNAs.

  • Zongji Zheng‎ et al.
  • International journal of endocrinology‎
  • 2014‎

Background. White adipose tissue browning may be a promising strategy to combat obesity. UCP1 is strongly induced in White adipose tissue with β3-adrenergic agonist treatment, but the causes of this increase have not been fully elucidated. This study aims to explore more miRNAs involved in the process of browning of visceral adipose tissue. Methods. Total of fourteen mice were randomly divided into control and study group. Study group mice were injected intraperitoneally with CL316243 once daily for seven days; meanwhile the control group were treated with 0.9% NaCl. After a 7-day period, the expression of genes involved in WAT browning and potential UCP1-targeting miRNAs in adipose tissues was analyzed by qPCR. Results. qPCR analysis revealed that UCP1, DIO2, CIDEA, and CPT1B in epididymal adipose tissue were overexpressed in CL316243 group. Furthermore, potential UCP1-targeting miR-9 and miR-338-3p in epididymal adipose tissue were significantly decreased in CL316243 group. Conclusion. This suggests that potential UCP1-targeting miR-9 and miR-338-3p may be involved in the browning of epididymal adipose tissue by regulating UCP1 gene expression. In this study, we demonstrated that this increase of UCP1 is due, at least in part, to the decreased expression of certain UCP1-targeting miRNAs in epididymal adipose tissue compared to control.


Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients.

  • Lu Wen‎ et al.
  • Cell research‎
  • 2015‎

Despite advances in DNA methylome analyses of cells and tissues, current techniques for genome-scale profiling of DNA methylation in circulating cell-free DNA (ccfDNA) remain limited. Here we describe a methylated CpG tandems amplification and sequencing (MCTA-Seq) method that can detect thousands of hypermethylated CpG islands simultaneously in ccfDNA. This highly sensitive technique can work with genomic DNA as little as 7.5 pg, which is equivalent to 2.5 copies of the haploid genome. We have analyzed a cohort of tissue and plasma samples (n = 151) of hepatocellular carcinoma (HCC) patients and control subjects, identifying dozens of high-performance markers in blood for detecting small HCC (≤ 3 cm). Among these markers, 4 (RGS10, ST8SIA6, RUNX2 and VIM) are mostly specific for cancer detection, while the other 15, classified as a novel set, are already hypermethylated in the normal liver tissues. Two corresponding classifiers have been established, combination of which achieves a sensitivity of 94% with a specificity of 89% for the plasma samples from HCC patients (n = 36) and control subjects including cirrhosis patients (n = 17) and normal individuals (n = 38). Notably, all 15 alpha-fetoprotein-negative HCC patients were successfully identified. Comparison between matched plasma and tissue samples indicates that both the cancer and noncancerous tissues contribute to elevation of the methylation markers in plasma. MCTA-Seq will facilitate the development of ccfDNA methylation biomarkers and contribute to the improvement of cancer detection in a clinical setting.


Suppression of hesA mutation on nitrogenase activity in Paenibacillus polymyxa WLY78 with the addition of high levels of molybdate or cystine.

  • Xiaomeng Liu‎ et al.
  • PeerJ‎
  • 2019‎

The diazotrophic Paenibacillus polymyxa WLY78 possesses a minimal nitrogen fixation gene cluster consisting of nine genes (nifB nifH nifD nifK nifE nifN nifX hesA and nifV). Notably, the hesA gene contained within the nif gene cluster is also found within nif gene clusters among diazotrophic cyanobacteria and Frankia. The predicted product HesA is a member of the ThiF-MoeB-HesA family containing an N-terminal nucleotide binding domain and a C-terminal MoeZ/MoeB-like domain. However, the function of hesA gene in nitrogen fixation is unknown. In this study, we demonstrate that the hesA mutation of P. polymyxa WLY78 leads to nearly complete loss of nitrogenase activity. The effect of the mutation can be partially suppressed by the addition of high levels of molybdate or cystine. However, the nitrogenase activity of the hesA mutant could not be restored by Klebsiella oxytoca nifQ or Escherichia coli moeB completely. In addition, the hesA mutation does not affect nitrate reductase activity of P. polymyxa WLY78. Our results demonstrate hesA is a novel gene specially required for nitrogen fixation and its role is related to introduction of S and Mo into the FeMo-co of nitrogenase.


IFNγ inhibits fibroblast-leading tumor cell invasion through downregulating N-cadherin.

  • Xiaomeng Liu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Tumor metastasis accounts for most tumor-associated mortality and is closely related with stromal fibroblasts in the tumor microenvironment. It was reported that fibroblasts promoted tumor metastasis through directly leading tumor cell invasion; however, inflammatory microenvironment in the growing tumor may influence the outcome. Here, we found that the cytokine IFNγ, a key immune mediator secreted by T cells, could alter mouse lung tumor associated fibroblast-leading LLC tumor cell invasion in Matrigel. The motility of fibroblasts and adhesion with tumor cells were dramatically impaired upon IFNγ stimulation. We further found that IFNγ reduced the expression of N-cadherin on the surface of fibroblasts through upregulating SMAD7 and suppressing the downstream SMAD2 phosphorylation. N-cadherin was essential for fibroblast motility and adhesions with tumor cells. Moreover, fibroblasts could promote tumor progression and the deficiency of IFNγR signaling in fibroblasts reduced liver metastasis of LLC tumor in vivo. Collectively, our results demonstrate that IFNγ inhibits fibroblast-leading tumor cell invasion by inhibiting the motility of fibroblasts and their adhesion with tumor cells. The findings indicate that inflammatory cytokines in the tumor microenvironment may regulate the fibroblast-associated tumor metastasis.


Swim Training Attenuates Inflammation and Improves Insulin Sensitivity in Mice Fed with a High-Fat Diet.

  • Guangzeng Zhang‎ et al.
  • International journal of endocrinology‎
  • 2017‎

Exercise could afford multiple beneficial effects on obesity-related metabolic disorders. To address this issue, C57BL/6J mice were used to investigate the effects of 13 weeks of swim training on HFD-induced obesity and related insulin resistance and inflammation. Our results show that swim training can significantly prevent HFD-induced weight gain and increase resting energy expenditure without affecting food intake. The insulin sensitivity was enhanced in the HFD + swim group than in the HFD + sedentary group. Moreover, swim training considerably decreased serum LPS content and downregulates epididymis white adipose tissue (eWAT) expression of the inflammatory mediator Tnf-α, Il-6, and Mcp-1. In summary, 13 weeks of swim training could reverse HFD-induced metabolic disorders including insulin resistance and inflammation.


Overexpression of microRNA-216a-3p Accelerates the Inflammatory Response in Cardiomyocytes in Type 2 Diabetes Mellitus by Targeting IFN-α2.

  • Xiaomeng Liu‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Background: Type 2 diabetes mellitus (T2DM) is a chronic, hyperglycemia-associated, metabolic disorder. Heart disease is a major complication of T2DM. The present study aimed to explore the effects of miR-216a-3p on cardiomyocyte proliferation, apoptosis, and inflammation in T2DM through the Toll-like receptor (TLR) pathway involving interferon-α2 (IFN-α2) mediation. Methods: T2DM was induced in rats by a high-fat diet, in combination with an intraperitoneal injection of low-dose streptozotocin. ELISAs were conducted to measure inflammatory-related factors in serum. Next, isolated cardiomyocytes were used in loss- and gain-of-function experiments, followed by MTT and flow cytometry assays, conducted to evaluate cell proliferation, cell cycle, and apoptosis. Results: Our results revealed an increase in the inflammatory response in T2DM rat models, accompanied by significantly increased expression of miR-216a-3p and TLR pathway-related genes. However, a decrease in the expression of IFN-α2 was observed. Moreover, the presence of an miR-216a-3p inhibitor and si-IFN-α2 increased the expression of TLR pathway-related genes and cell apoptosis, whereas cell proliferation was significantly decreased in the cardiomyocytes. Conclusion: We found that in T2DM, miR-216a-3p inhibited the proliferation and enhanced the apoptosis of cardiomyocytes and generated an inflammatory response through activation of the TLR pathway and targeting of IFN-α2.


IL-17A-stimulated endothelial fatty acid β-oxidation promotes tumor angiogenesis.

  • Ruirui Wang‎ et al.
  • Life sciences‎
  • 2019‎

Tumor growth is an angiogenesis-dependent process that requires sustained new vessel growth. Interleukin-17 (IL-17A) is a key cytokine that modulates tumor progression. However, whether IL-17A affects the metabolism of endothelial cells is unknown.


Role of tumor mutation burden-related signatures in the prognosis and immune microenvironment of pancreatic ductal adenocarcinoma.

  • Rong Tang‎ et al.
  • Cancer cell international‎
  • 2021‎

High tumor mutation burden (TMB) has gradually become a sensitive biomarker for predicting the response to immunotherapy in many cancers, including lung, bladder and head and neck cancers. However, whether high TMB predicts the response to immunotherapy and prognosis in pancreatic ductal adenocarcinoma (PDAC) remained obscure. Hence, it is significant to investigate the role of genes related to TMB (TRGs) in PDAC.


Multi-instance learning of graph neural networks for aqueous pKa prediction.

  • Jiacheng Xiong‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2022‎

The acid dissociation constant (pKa) is a critical parameter to reflect the ionization ability of chemical compounds and is widely applied in a variety of industries. However, the experimental determination of pKa is intricate and time-consuming, especially for the exact determination of micro-pKa information at the atomic level. Hence, a fast and accurate prediction of pKa values of chemical compounds is of broad interest.


Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera).

  • Xiaomeng Liu‎ et al.
  • Insects‎
  • 2021‎

The Pyraloidea is one of the species-rich superfamilies of Lepidoptera and contains numerous economically important pest species that cause great loss in crop production. Here, we sequenced and annotated nine complete mitogenomes for Pyraloidea, and further performed various phylogenetic analyses, to improve our understanding of mitogenomic evolution and phylogeny of this superfamily. The nine mitogenomes were circular, double-stranded molecules, with the lengths ranging from 15,214 bp to 15,422 bp, which are comparable to other reported pyraloid mitogenomes in size. Gene content and arrangement were highly conserved and are typical of Lepidoptera. Based on the hitherto most extensive mitogenomic sampling, our various resulting trees showed generally congruent topologies among pyraloid subfamilies, which are almost in accordance with previous multilocus studies, indicating the suitability of mitogenomes in inferring high-level relationships of Pyraloidea. However, nodes linking subfamilies in the "non-PS clade" were not completely resolved in terms of unstable topologies or low supports, and future investigations are needed with increased taxon sampling and molecular data. Unexpectedly, Orybina Snellen, represented in a molecular phylogenetic investigation for the first time, was robustly placed as basal to the remaining Pyralidae taxa across our analyses, rather than nested in Pyralinae of Pyralidae as morphologically defined. This novel finding highlights the need to reevaluate Orybina monophyly and its phylogenetic position by incorporating additional molecular and morphological evidence.


Aspartic proteases modulate programmed cell death and secondary cell wall synthesis during wood formation in poplar.

  • Shenquan Cao‎ et al.
  • Journal of experimental botany‎
  • 2022‎

Programmed cell death (PCD) is essential for wood development in trees. However, the determination of crucial factors involved in xylem PCD of wood development is still lacking. Here, two Populus trichocarpa typical aspartic protease (AP) genes, AP17 and AP45, modulate xylem maturation, especially fibre PCD, during wood formation. AP17 and AP45 were dominantly expressed in the fibres of secondary xylem, as suggested by GUS expression in APpro::GUS transgenic plants. Cas9/gRNA-induced AP17 or AP45 mutants delayed secondary xylem fibre PCD, and ap17ap45 double mutants showed more serious defects. Conversely, AP17 overexpression caused premature PCD in secondary xylem fibres, indicating a positive modulation in wood fibre PCD. Loss of AP17 and AP45 did not alter wood fibre wall thickness, whereas the ap17ap45 mutants showed a low lignin content in wood. However, AP17 overexpression led to a significant decrease in wood fibre wall thickness and lignin content, revealing the involvement in secondary cell wall synthesis during wood formation. In addition, the ap17ap45 mutant and AP17 overexpression plants resulted in a significant increase in saccharification yield in wood. Overall, AP17 and AP45 are crucial modulators in xylem maturation during wood development, providing potential candidate genes for engineering lignocellulosic wood for biofuel utilization.


Evaluation and subgroup analysis of the efficacy and safety of intensive rosuvastatin therapy combined with dual antiplatelet therapy in patients with acute ischemic stroke.

  • Ting Deng‎ et al.
  • European journal of clinical pharmacology‎
  • 2023‎

We investigated the efficacy of intensive rosuvastatin therapy plus 7-day dual antiplatelet therapy (DAPT) in reducing stroke recurrence for patients with acute ischemic stroke (AIS) and compared subgroups of patients.


Circadian Rhythm Disorders Aggravate Periodontitis by Modulating BMAL1.

  • Xiaomeng Liu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Circadian rhythms regulate the body's homeostasis through the temporal control of tissue-specific circadian rhythm control genes. Circadian rhythm disorders (CRD) affect the expression levels of circadian rhythms-associated genes in brain and muscle aryl hydrocarbon receptor nuclear translocator-like-1(BMAL1), which is thought to contribute to metabolic disorders and an altered immune system. However, the relationship between CRD and the development of periodontitis was poorly reported. Therefore, this study aimed to investigate the role played by BMAL1 in periodontitis. We used a modified multi-platform approach (MMPM) to induce circadian rhythm disturbances in rats to investigate the role of BMAL1 in periodontitis. Our results showed significant downregulation of BMAL1 in the CRD with periodontitis group, significant resorption of alveolar bone, increased osteoclast differentiation, and upregulation of the inflammatory signaling molecule NF-κB. In addition, apoptosis and oxidative stress levels were increased in periodontal tissues. Collectively, our study suggests that BMAL1 is a key regulator in periodontitis exacerbated by CRD and that CRD may lead to the downregulation of BMAL1, thereby exacerbating oxidative stress and apoptosis in periodontal tissues. Our study found that BMAL1 may be associated with the progression of periodontitis and provides a new perspective on the treatment of periodontitis.


RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGFC in an m6A-YTHDF2-dependent manner.

  • Zhen Tan‎ et al.
  • Oncogene‎
  • 2022‎

RNA N6-methyladenosine (m6A) is an emerging regulator of mRNA modifications and represents a novel player in tumorigenesis. Although it has functional significance in both pathological and physiological processes, the role of m6A modification in pancreatic ductal cancer (PDAC) remains elusive. Here, we showed that high fat mass and obesity-associated gene (FTO) expression was associated with a poor prognosis in PDAC patients and that suppression of FTO expression inhibited cell proliferation. Here, m6A sequencing (m6A-seq) was performed to screen genes targeted by FTO. The effects of FTO stimulation on the biological characteristics of pancreatic cancer cells, including proliferation and colony formation, were investigated in vitro and in vivo. The results indicate that FTO directly targets platelet-derived growth factor C (PDGFC) and stabilizes its mRNA expression in an m6A-YTHDF2-dependent manner. m6A-methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), RNA immunoprecipitation (RIP), and luciferase reporter assays were employed to validate the specific binding of FTO to PDGFC. PDGFC upregulation led to reactivation of the Akt signaling pathway, promoting cell growth. Overall, our study reveals that FTO downregulation leads to increased m6A modifications in the 3' UTR of PDGFC and then modulates the degradation of its transcriptional level in an m6A-YTHDF2-dependent manner, highlighting a potential therapeutic target for PDAC treatment and prognostic prediction.


Synergistic Antibacterial Activity of Benzalkonium Bromide and Cu-Bearing Duplex Stainless Steel against Pseudomonas aeruginosa.

  • Xiaomeng Liu‎ et al.
  • Microorganisms‎
  • 2023‎

The bactericide benzalkonium bromide is widely used to kill Pseudomonas aeruginosa, which causes microbiologically influenced corrosion (MIC). However, the extensive use of benzalkonium bromide will enhance bacterial drug resistance and cause environmental pollution. In this study, benzalkonium bromide combined with Cu-bearing 2205 duplex stainless steel (2205-Cu DSS) was used to kill Pseudomonas aeruginosa; the germicidal rate of the combination of benzalkonium bromide and 2205-Cu DSS was 24.2% higher than that of using benzalkonium bromide alone, after five days. The antibacterial efficacy was evaluated using an antibacterial test and biofilm observation. The results showed that, in the presence of P. aeruginosa, the combination of 23.44 ppm benzalkonium bromide and 2205-Cu DSS showed the best antibacterial efficacy.


Directed evolution unlocks oxygen reactivity for a nicotine-degrading flavoenzyme.

  • Mark Dulchavsky‎ et al.
  • Nature chemical biology‎
  • 2023‎

The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.


Expression levels and genetic polymorphisms of interleukin-2 and interleukin-10 as biomarkers of Graves' disease.

  • Cuige Liang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

The aim of the present study was to determine whether the expression levels of interleukin (IL)-2 and IL-10 may be used as biological markers in Graves' disease (GD) patients. A total of 256 individuals, including 118 GD patients and 138 healthy individuals, were enrolled into the study. Blood samples were collected from each patient and healthy individual, which were then subjected to enzyme-linked immunosorbent assay (ELISA). Total RNA and total proteins were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. In addition, restriction fragment length polymorphism (RFLP) analysis was performed to detect the presence of genetic polymorphisms. The ELISA results indicated that the IL-2 and IL-10 serum levels in the GD patients were increased by ~5.2 and ~7-fold when compared with the levels in the healthy controls. The results of RT-qPCR indicated that the mRNA expression levels of IL-2 and IL-10 were upregulated in the GD patients when compared with the healthy controls. Furthermore, the western blot analysis results revealed that the protein expression levels of IL-2 and IL-10 were significantly increased in the GD patients. RFLP analysis indicated that the increased number of GG single nucleotide polymorphisms (SNPs) in the GD group were detected in the -330 locus of the IL-2 promoter and the -1082 locus of the IL-10 promoter. In addition, the results indicated that the relatively high rates of homozygous GG SNPs (IL-2 -330T/G and IL-10 -1082A/G polymorphisms) on the alleles may be associated with the incidence of GD. The serum, mRNA and protein expression levels of IL-2 and IL-10 were significantly increased in GD patients when compared with the levels in the healthy controls. In conclusion, the expression levels and genetic polymorphisms of IL-2 and IL-10 may be potential biomarkers for the incidence of Graves' disease in the population studied.


Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species.

  • Jianbo Xie‎ et al.
  • Scientific reports‎
  • 2016‎

Paenibacillus polymyxa has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9 P. polymyxa strains, together with 26 other sequenced Paenibacillus spp., were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9 P. polymyxa strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. Some genes relevant to plant-growth promoting traits, i.e. phosphate solubilization and IAA production, are well conserved, while some genes relevant to nitrogen fixation and antibiotics synthesis are evolved with diversity in this Poly-clade. This study reveals that both P. polymyxa and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR.


A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

  • Liying Wang‎ et al.
  • PLoS genetics‎
  • 2013‎

Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70) (σ(A))-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: