Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway.

  • Xinhua Zhang‎ et al.
  • PloS one‎
  • 2014‎

Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways.


Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats.

  • Weiwei Chen‎ et al.
  • PloS one‎
  • 2014‎

Lycium barbarum is used both as a food additive and as a medicinal herb in many countries, and L. barbarum polysaccharides (LBPs), a major cell component, are reported to have a wide range of beneficial effects including neuroprotection, anti-aging and anticancer properties, and immune modulation. The effects of LBPs on neuronal function, neurogenesis, and drug-induced learning and memory deficits have not been assessed. We report the therapeutic effects of LBPs on learning and memory and neurogenesis in scopolamine (SCO)-treated rats. LBPs were administered via gastric perfusion for 2 weeks before the onset of subcutaneous SCO treatment for a further 4 weeks. As expected, SCO impaired performance in novel object and object location recognition tasks, and Morris water maze. However, dual SCO- and LBP-treated rats spent significantly more time exploring the novel object or location in the recognition tasks and had significant shorter escape latency in the water maze. SCO administration led to a decrease in Ki67- or DCX-immunoreactive cells in the dentate gyrus and damage of dendritic development of the new neurons; LBP prevented these SCO-induced reductions in cell proliferation and neuroblast differentiation. LBP also protected SCO-induced loss of neuronal processes in DCX-immunoreactive neurons. Biochemical investigation indicated that LBP decreased the SCO-induced oxidative stress in hippocampus and reversed the ratio Bax/Bcl-2 that exhibited increase after SCO treatment. However, decrease of BDNF and increase of AChE induced by SCO showed no response to LBP administration. These results suggest that LBPs can prevent SCO-induced cognitive and memory deficits and reductions in cell proliferation and neuroblast differentiation. Suppression of oxidative stress and apoptosis may be involved in the above effects of LBPs that may be a promising candidate to restore memory functions and neurogenesis.


The molecular landscape of synchronous colorectal cancer reveals genetic heterogeneity.

  • Xiangfeng Wang‎ et al.
  • Carcinogenesis‎
  • 2018‎

Synchronous colorectal cancers (syCRCs), which present two or more lesions at diagnosis, are rare and pose a great challenge for clinical management. Although some predisposing factors associated with syCRCs have been studied with limited accession, the full repertoire of genomic events among the lesions within an individual and the causes of syCRCs remain unclear. We performed whole-exome sequencing of 40 surgical tumour samples of paired lesions from 20 patients to characterize the genetic alterations. Lesions from same patient showed distinct landscapes of somatic aberrations and shared few mutations, which suggests that they originate and develop independently, although they shared the similar genetic background. Canonical genes, such as APC, KRAS, TP53 and PIK3CA, were frequently mutated in the syCRCs, and most of them show different mutation profile compared with solitary colorectal cancer. We identified a recurrent somatic alteration (K15fs) in RPL22 in 25% of the syCRCs. Functional analysis indicated that mutated RPL22 may suppress cell apoptosis and promote the epithelial-mesenchymal transition (EMT). Potential drug targets were identified in several signalling pathways, and they present great discrepancy between lesions from the same patient. Our data show that the syCRCs within the same patient present great genetic heterogeneity, and they may be driven by distinct molecular events and develop independently. The discrepancy of potential drug targets and mutation burden in lesions from one patient provides valuable information in clinical management for patients with syCRCs.


Genetic basis of brain size evolution in cetaceans: insights from adaptive evolution of seven primary microcephaly (MCPH) genes.

  • Shixia Xu‎ et al.
  • BMC evolutionary biology‎
  • 2017‎

Cetacean brain size expansion is an enigmatic event in mammalian evolution, yet its genetic basis remains poorly explored. Here, all exons of the seven primary microcephaly (MCPH) genes that play key roles in size regulation during brain development were investigated in representative cetacean lineages.


Manufacture of highly loaded silica-supported cobalt Fischer-Tropsch catalysts from a metal organic framework.

  • Xiaohui Sun‎ et al.
  • Nature communications‎
  • 2017‎

The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.


Long-term urbanization impacts the eastern golden frog (Pelophylax plancyi) in Shanghai City: Demographic history, genetic structure, and implications for amphibian conservation in intensively urbanizing environments.

  • Xu Wei‎ et al.
  • Evolutionary applications‎
  • 2021‎

Understanding the mechanisms of how urbanization influences the evolution of native species is vital for urban wildlife ecology and conservation in the Anthropocene. With thousands of years of agriculture-dominated historical urbanization followed by 40 years of intensive and rapid urbanization, Shanghai provides an ideal environment to study how the two-stage urbanization process influences the evolution of indigenous wildlife, especially of anuran species. Therefore, in this study, we used mitochondrial Cyt-b gene, microsatellite (SSR), and single nucleotide polymorphism (SNP) data to evaluate the demographic history and genetic structure of the eastern golden frog (Pelophylax plancyi), by sampling 407 individuals from 15 local populations across Shanghai, China. All local populations experienced bottlenecks during historical urbanization, while the local populations in urban areas maintained comparable contemporary effective population sizes (N e) and genetic diversity with suburban and rural populations. Nevertheless, the rapid modern urbanization has already imposed significant negative effects to the integrity of populations. The 15 local populations were differentiated into eight genetic clusters, showing a spatial distribution pattern consistent with the current urbanization gradient and island-mainland geography. Although moderate gene flow still occurred from the rural peripheral cluster to urban and suburban clusters, population fragmentation was more serious in the urban and suburban populations, where higher urbanization levels within 2-km radius areas showed significant negative relationships to the N e and genetic diversity of local populations. Therefore, to protect urban wildlife with limited dispersal ability, improving conditions in fragmented habitat remnants might be most essential for local populations living in more urbanized areas. Meanwhile, we highlight the need to preserve large unfragmented rural habitats and to construct corridor networks to connect discrete urban habitat remnants for the long-term wildlife conservation in intensively urbanizing environments.


The association of CMTM6 expression with prognosis and PD-L1 expression in triple-negative breast cancer.

  • Yiping Tian‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Immune checkpoint inhibitors play a vital role in triple-negative breast cancer (TNBC) immunotherapy. A recent study showed that chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) has a crucial role in programmed death-ligand 1 (PD-L1) stability. The aim of this study was to investigate the relationship between CMTM6 and PD-L1 in TNBC and the association with clinical characteristics.


Genome-wide analysis reveals the association between alternative splicing and DNA methylation across human solid tumors.

  • Xiaohui Sun‎ et al.
  • BMC medical genomics‎
  • 2020‎

Dysregulation of alternative splicing (AS) is a critical signature of cancer. However, the regulatory mechanisms of cancer-specific AS events, especially the impact of DNA methylation, are poorly understood.


The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals.

  • Yanan Cao‎ et al.
  • Cell research‎
  • 2020‎

Metabolic diseases are the most common and rapidly growing health issues worldwide. The massive population-based human genetics is crucial for the precise prevention and intervention of metabolic disorders. The China Metabolic Analytics Project (ChinaMAP) is based on cohort studies across diverse regions and ethnic groups with metabolic phenotypic data in China. Here, we describe the centralized analysis of the deep whole genome sequencing data and the genetic bases of metabolic traits in 10,588 individuals from the ChinaMAP. The frequency spectrum of variants, population structure, pathogenic variants and novel genomic characteristics were analyzed. The individual genetic evaluations of Mendelian diseases, nutrition and drug metabolism, and traits of blood glucose and BMI were integrated. Our study establishes a large-scale and deep resource for the genetics of East Asians and provides opportunities for novel genetic discoveries of metabolic characteristics and disorders.


Comparison of antibiotic prescribing records in two UK primary care electronic health record systems: cohort study using CPRD GOLD and CPRD Aurum databases.

  • Martin C Gulliford‎ et al.
  • BMJ open‎
  • 2020‎

We aimed to evaluate recording of antibiotic prescribing from two primary care electronic health record systems.


NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest.

  • Xiaohui Sun‎ et al.
  • Nucleic acids research‎
  • 2020‎

Nuclear factor erythroid 2-related factor 2 (NRF2) is a well-characterized transcription factor that protects cells against oxidative and electrophilic stresses. Emerging evidence has suggested that NRF2 protects cells against DNA damage by mechanisms other than antioxidation, yet the mechanism remains poorly understood. Here, we demonstrate that knockout of NRF2 in cells results in hypersensitivity to ionizing radiation (IR) in the presence or absence of reactive oxygen species (ROS). Under ROS scavenging conditions, induction of DNA double-strand breaks (DSBs) increases the NRF2 protein level and recruits NRF2 to DNA damage sites where it interacts with ATR, resulting in activation of the ATR-CHK1-CDC2 signaling pathway. In turn, this leads to G2 cell cycle arrest and the promotion of homologous recombination repair of DSBs, thereby preserving genome stability. The inhibition of NRF2 by brusatol increased the radiosensitivity of tumor cells in xenografts by perturbing ATR and CHK1 activation. Collectively, our results reveal a novel function of NRF2 as an ATR activator in the regulation of the cellular response to DSBs. This shift in perspective should help furnish a more complete understanding of the function of NRF2 and the DNA damage response.


Genetic Variability and Molecular Evolution of Tomato Mosaic Virus Populations in Three Northern China Provinces.

  • Jinfu Lyu‎ et al.
  • Viruses‎
  • 2023‎

RNA viruses tend to mutate during transmission and host infection, which is critical to viral adaptation and evolution. Tomato mosaic virus (ToMV) is a member of the genus Tobamovirus (family Virgaviridae) and an economically important virus with detrimental effects on tomatoes worldwide. Although the ToMV gene sequences have been completed in China, their genetic diversity and population structure remain unclear. We collected 425 tomato samples from tomato-growing areas in three northern Chinese provinces 2016. Reverse transcription PCR results showed that the average incidence of the virus in the field samples was 67.15%, and ToMV was detected in all test areas. The analysis of ToMV single nucleotide polymorphisms in China showed that ToMV was evolutionarily conserved, and the variation in the whole genome was uneven. Pairwise identity analysis showed significant variability in genome sequences among ToMV strains with genomic nucleotide identities of 73.2-99.6%. The ToMV population in the northern Chinese provinces had purification and selection functions, which were beneficial in the evolution of the ToMV population. Although there has been some distribution of ToMV strains in China, the virus was generally stabilized as a uniform strain under the pressure of purification selection. Our findings show how to monitor the prevalent strains of ToMV and their virulence in China and provide useful information for its prevention and control.


Genetically determined circulating micronutrients and the risk of nonalcoholic fatty liver disease.

  • Ke Liu‎ et al.
  • Scientific reports‎
  • 2024‎

Evidence from epidemiological literature on the association of circulating micronutrients with risk of nonalcoholic fatty liver disease (NAFLD) is inconsistent. We aimed to elucidate the causal relationships using Mendelian randomization (MR). Single-nucleotide polymorphisms associated with 14 circulating micronutrients (β-carotene, calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B6, B12, C, D, K1 and zinc) were employed as instrumental variables. Summary level data for NAFLD were obtained from a genome-wide association study (GWAS) meta-analysis of 8434 cases and 770,180 controls (discovery stage) and another two datasets including 1483 NAFLD cases and 17,781 controls (replication stage 1) and 2134 NAFLD cases and 33,433 controls (replication stage 2). Inverse variance-weighted method (IVW) was used as primary analysis, supplemented with a series of sensitivity analysis. Genetically predicted higher β‑carotene levels were suggestively associated with reduced NAFLD risk [odds ratio (OR) 0.81, 95% confidence interval (CI) 0.66-0.99; P = 0.047], whereas the association did not survive the false discovery rates (FDR) correction (PFDR = 0.164). Genetically predicted circulating iron (OR 1.16, 95% CI 1.05-1.29; P = 0.006, PFDR = 0.028), selenium (OR 1.11, 95% CI 1.03-1.20; P = 0.005, PFDR = 0.028) and vitamin B12 (OR 1.08, 95% CI 1.03-1.13; P = 0.002, PFDR = 0.028) were significantly associated with increased risk of NAFLD. Moreover, the findings were consistent in individual datasets (Pheterogeneity > 0.05) and confirmed in sensitivity analysis. Our study provided evidence that circulating iron, selenium and vitamin B12 might be causally linked to the risk of NAFLD, which deserves further exploration of the potential biological mechanism.


Evaluation and identification of powdery mildew-resistant genes in 137 wheat relatives.

  • Jiaojiao Wang‎ et al.
  • Frontiers in genetics‎
  • 2024‎

Powdery mildew is one of the most severe diseases affecting wheat yield and quality and is caused by Blumeria graminis f. sp. tritici (Bgt). Host resistance is the preferred strategy to prevent this disease. However, the narrow genetic basis of common wheat has increased the demand for diversified germplasm resources against powdery mildew. Wheat relatives, especially the secondary gene pool of common wheat, are important gene donors in the genetic improvement of common wheat because of its abundant genetic variation and close kinship with wheat. In this study, a series of 137 wheat relatives, including 53 Triticum monococcum L. (2n = 2x = 14, AA), 6 T. urartu Thumanjan ex Gandilyan (2n = 2x = 14, AA), 9 T. timopheevii Zhuk. (2n = 4x = 28, AAGG), 66 T. aestivum subsp. spelta (2n = 6x = 42, AABBDD), and 3 Aegilops speltoides (2n = 2x = 14, SS) were systematically evaluated for their powdery mildew resistance and composition of Pm genes. Out of 137 (60.58%) accessions, 83 were resistant to Bgt isolate E09 at the seedling stage, and 116 of 137 (84.67%) wheat relatives were resistant to the mixture of Bgt isolates at the adult stage. This indicates that these accessions show a high level of resistance to powdery mildew. Some 31 markers for 23 known Pm genes were used to test these 137 accessions, and, in the results, only Pm2, Pm4, Pm6, Pm58, and Pm68 were detected. Among them, three Pm4 alleles (Pm4a, Pm4b, and Pm4f) were identified in 4 T. subsp. spelta accessions. q-RT PCR further confirmed that Pm4 alleles played a role in disease resistance in these four accessions. The phylogenetic tree showed that the kinship of Pm4 was close to Pm24 and Sr62. This study not only provides reference information and valuable germplasm resources for breeding new wheat varieties with disease resistance but also lays a foundation for enriching the genetic basis of wheat resistance to powdery mildew.


Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage.

  • Xiaohui Sun‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

NF-E2-related factor 2 (Nrf2) has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR) can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol's ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy.


MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells.

  • Jun Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

MicroRNAs (miRNAs) play an essential role in cancer development. Several studies have indicated that miRNAs mediate tumorigenesis processes, such as, inflammation, proliferation, apoptosis and invasion. In the present study, we focused on the influence of the miR-127-3p on the proliferation, migration and invasion of osteosarcoma (OS). MiR-127-3p was found at reduced levels in OS tissues and cell lines. Overexpression of miR-127-3p in the OS cell lines significantly inhibited the cell proliferation, migration and invasion; however, inhibition of miR-127-3p increased the proliferation, migration and invasion of OS in vitro. SETD8 was identified as a direct target of miR-127-3p, and SETD8 expression decreased post miR-127-3p overexpression, while SETD8 overexpression could reverse the potential influence of miR-127-3p on the migration and invasion of OS cells. MiR-127-3p is suggested to act mainly via the suppression of SETD8 expression. Overall, the results revealed that miR-127-3p acts as a tumor suppressor and that its down-regulation in cancer may contribute to OS progression and metastasis, suggesting that miR-127-3p could be a potential therapeutic target in the treatment of OS.


Exosomal microRNA-23b-3p from bone marrow mesenchymal stem cells maintains T helper/Treg balance by downregulating the PI3k/Akt/NF-κB signaling pathway in intracranial aneurysm.

  • Xiaohui Sun‎ et al.
  • Brain research bulletin‎
  • 2020‎

Bone marrow mesenchymal stem cells (BMSCs) are involved in cancer initiation and metastasis, and sometimes mediate cell communication by releasing exosomes and delivering microRNAs (miRNAs). The study aims to investigate the effects of exosomal hsa-miR-23b-3p derived from human BMSCs on intracranial aneurysm (IA). Firstly, human BMSCs-derived exosomes were extracted by ultra-high speed centrifugation. After clinical specimen collection, imbalance of T helper (Th) 17/Treg was found in patients with IA. Then, basilar artery aneurysm models were established and BMSCs-derived exosomes were isolated and identified. The results showed that BMSCs-derived exosomes improved pathological remodeling of IA wall, upregulated the contractile phenotype and inhibited the secretory phenotype of smooth muscle cells and reduced the number of Th17 cells to maintain the balance of Th17/Treg. In addition, human BMSCs-derived exosomes inhibited the activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt)/nuclear factor-kappa B (NF-κB) signaling pathway and maintained Th17/Treg balance, which in turn interfered with aneurysm formation. Finally, the targeting relationship between hsa-miR-23b-3p and KLF5 was confirmed. We further noted that BMSCs-derived exosomal hsa-miR-23b-3p inhibited IA formation by targeting KLF5 through suppression of the PI3k/Akt/NF-κB signaling pathway. All in all, our study concluded that BMSCs-derived exosomal hsa-miR-23b-3p could maintain Th17/Treg balance by targeting KLF5 through suppression of the PI3k/Akt/NF-κB signaling pathway, thus inhibit IA formation.


Genetically Predicted Cigarette Smoking in Relation to Risk of Polycystic Ovary Syndrome.

  • Yingli Tao‎ et al.
  • Clinical epidemiology‎
  • 2021‎

Evidence from observational studies has suggested a link between cigarette smoking and the risk of polycystic ovary syndrome (PCOS). However, it remains uncertain whether the observed relationship is causal or due to biases inherent in observational studies. Therefore, we adopted two-sample Mendelian randomization (MR) design to assess the potential causal association between smoking and the risk of PCOS.


Inhibition of BRD4 inhibits proliferation and promotes apoptosis of psoriatic keratinocytes.

  • Xiaohui Sun‎ et al.
  • Biomedical engineering online‎
  • 2021‎

Psoriasis is a common chronic recurrent inflammatory skin disease. The pathogenesis of psoriasis, such as other autoimmune diseases, is still unclear, which brings great difficulties to the treatment. This study aimed to investigate the role of bromine domain protein 4 (BRD4) in affecting the psoriatic keratinocytes.


Continuous Activation of Dopamine Receptors Alleviates LPS-Induced Liver Injury in Mice via β-arrestin2 Dependent Akt/NF-κB Pathway.

  • Mingan Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Many studies showed that dopamine receptors (DRs) agonists have anti-inflammatory effects. Rotigotine, a non-ergot dopamine receptor agonist, mainly actives DRD2/DRD3/DRD1. Rotigotine extended-release microspheres (RoMS) are a sustained-release formulation that can release sustainably rotigotine for more than 7 days after a single dose of RoMS. This study aimed to investigate whether RoMS can attenuate the lipopolysaccharide (LPS)-induced liver injury of mice. The liver injury was evaluated by assaying serum transaminase and observing histopathological changes. The levels of pro-inflammatory cytokines in serum were also detected. Western blot was employed to assay the expression of proteins in the Akt/NF-κB pathway. The results showed that pre-administration with a single dose of RoMS could inhibit the increase of serum transaminase induced by LPS, alleviate the pathological damage of liver tissue, and decrease the levels of tumor necrosis factor-α and interleukin-6. In addition, RoMS decreased Toll-like receptor 4 protein expression in liver tissue. RoMS mitigated liver injury by activating DRs and negatively regulating the β-arrestin2-dependent Akt/NF-κB signaling pathway. The effects of RoMS could be weakened or abolished by the specific DRD2 antagonist, R121. In conclusion, activation of DRs inhibited the releases of pro-inflammatory cytokines and alleviated the immune-mediated liver injury induced by LPS in mice. The anti-inflammatory mechanism of RoMS may be related to the regulation of the β-arrestin2-dependent Akt/NF-κB signaling pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: