Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

  • Cecilia M Lindgren‎ et al.
  • PLoS genetics‎
  • 2009‎

To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.


Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci.

  • Darren Plant‎ et al.
  • Arthritis and rheumatism‎
  • 2011‎

Anti-tumor necrosis factor (anti-TNF) agents are successful therapies in rheumatoid arthritis (RA); however, inadequate response occurs in 30-40% of patients treated. Knowledge of the genetic factors that influence response may facilitate personalized therapy. The purpose of this study was to identify genetic predictors of response to anti-TNF therapy in RA and to validate our findings in independent cohorts.


High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.

  • Steve Eyre‎ et al.
  • Nature genetics‎
  • 2012‎

Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.


Novel rheumatoid arthritis susceptibility locus at 22q12 identified in an extended UK genome-wide association study.

  • Gisela Orozco‎ et al.
  • Arthritis & rheumatology (Hoboken, N.J.)‎
  • 2014‎

The number of confirmed rheumatoid arthritis (RA) loci currently stands at 32, but many lines of evidence indicate that expansion of existing genome-wide association studies (GWAS) enhances the power to detect additional loci. This study was undertaken to extend our previous RA GWAS in a UK cohort, adding more independent RA cases and healthy controls, with the aim of detecting novel association signals for susceptibility to RA in a homogeneous UK cohort.


Genome-wide meta-analysis of common variant differences between men and women.

  • Vesna Boraska‎ et al.
  • Human molecular genetics‎
  • 2012‎

The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10(-8)) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.


LDL-cholesterol concentrations: a genome-wide association study.

  • Manjinder S Sandhu‎ et al.
  • Lancet (London, England)‎
  • 2008‎

LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations.


Exome-wide study of ankylosing spondylitis demonstrates additional shared genetic background with inflammatory bowel disease.

  • Philip C Robinson‎ et al.
  • NPJ genomic medicine‎
  • 2016‎

Ankylosing spondylitis (AS) is a common chronic immune-mediated arthropathy affecting primarily the spine and pelvis. The condition is strongly associated with HLA-B*27 as well as other human leukocyte antigen variants and at least 47 individual non-MHC-associated variants. However, substantial additional heritability remains as yet unexplained. To identify further genetic variants associated with the disease, we undertook an association study of AS in 5,040 patients and 21,133 healthy controls using the Illumina Exomechip microarray. A novel association achieving genome-wide significance was noted at CDKAL1. Suggestive associations were demonstrated with common variants in FAM118A, C7orf72 and FAM114A1 and with a low-frequency variant in PNPLA1. Two of the variants have been previously associated with inflammatory bowel disease (IBD; CDKAL1 and C7orf72). These findings further increase the evidence for the marked similarity of genetic risk factors for IBD and AS, consistent with the two diseases having similar aetiopathogenesis.


MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls.

  • D Cosgrove‎ et al.
  • Translational psychiatry‎
  • 2017‎

Variants at microRNA-137 (MIR137), one of the most strongly associated schizophrenia risk loci identified to date, have been associated with poorer cognitive performance. As microRNA-137 is known to regulate the expression of ~1900 other genes, including several that are independently associated with schizophrenia, we tested whether this gene set was also associated with variation in cognitive performance. Our analysis was based on an empirically derived list of genes whose expression was altered by manipulation of MIR137 expression. This list was cross-referenced with genome-wide schizophrenia association data to construct individual polygenic scores. We then tested, in a sample of 808 patients and 192 controls, whether these risk scores were associated with altered performance on cognitive functions known to be affected in schizophrenia. A subgroup of healthy participants also underwent functional imaging during memory (n=108) and face processing tasks (n=83). Increased polygenic risk within the empirically derived miR-137 regulated gene score was associated with significantly lower performance on intelligence quotient, working memory and episodic memory. These effects were observed most clearly at a polygenic threshold of P=0.05, although significant results were observed at all three thresholds analyzed. This association was found independently for the gene set as a whole, excluding the schizophrenia-associated MIR137 SNP itself. Analysis of the spatial working memory fMRI task further suggested that increased risk score (thresholded at P=10-5) was significantly associated with increased activation of the right inferior occipital gyrus. In conclusion, these data are consistent with emerging evidence that MIR137 associated risk for schizophrenia may relate to its broader downstream genetic effects.


Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2.

  • Thorsten Thye‎ et al.
  • Nature genetics‎
  • 2010‎

We combined two tuberculosis genome-wide association studies from Ghana and The Gambia with subsequent replication in a combined 11,425 individuals. rs4331426, located in a gene-poor region on chromosome 18q11.2, was associated with disease (combined P = 6.8 x 10(-9), odds ratio = 1.19, 95% CI = 1.13-1.27). Our study demonstrates that genome-wide association studies can identify new susceptibility loci for infectious diseases, even in African populations, in which levels of linkage disequilibrium are particularly low.


Seven newly identified loci for autoimmune thyroid disease.

  • Jason D Cooper‎ et al.
  • Human molecular genetics‎
  • 2012‎

Autoimmune thyroid disease (AITD), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), is one of the most common of the immune-mediated diseases. To further investigate the genetic determinants of AITD, we conducted an association study using a custom-made single-nucleotide polymorphism (SNP) array, the ImmunoChip. The SNP array contains all known and genotype-able SNPs across 186 distinct susceptibility loci associated with one or more immune-mediated diseases. After stringent quality control, we analysed 103 875 common SNPs (minor allele frequency >0.05) in 2285 GD and 462 HT patients and 9364 controls. We found evidence for seven new AITD risk loci (P < 1.12 × 10(-6); a permutation test derived significance threshold), five at locations previously associated and two at locations awaiting confirmation, with other immune-mediated diseases.


Genome-wide association study of receptive language ability of 12-year-olds.

  • Nicole Harlaar‎ et al.
  • Journal of speech, language, and hearing research : JSLHR‎
  • 2014‎

Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a genome-wide association approach.


Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.

  • Andrew P Morris‎ et al.
  • Nature genetics‎
  • 2012‎

To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.


Cooperative genome-wide analysis shows increased homozygosity in early onset Parkinson's disease.

  • Javier Simón-Sánchez‎ et al.
  • PloS one‎
  • 2012‎

Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity.We carried out genome wide SNP genotyping to look for extended runs of homozygosity (ROHs) in 1,445 EOPD cases and 6,987 controls. Logistic regression analyses showed an increased level of genomic homozygosity in EOPD cases compared to controls. These differences are larger for ROH of 9 Mb and above, where there is a more than three-fold increase in the proportion of cases carrying a ROH. These differences are not explained by occult recessive mutations at existing loci. Controlling for genome wide homozygosity in logistic regression analyses increased the differences between cases and controls, indicating that in EOPD cases ROHs do not simply relate to genome wide measures of inbreeding. Homozygosity at a locus on chromosome19p13.3 was identified as being more common in EOPD cases as compared to controls. Sequencing analysis of genes and predicted transcripts within this locus failed to identify a novel mutation causing EOPD in our cohort.There is an increased rate of genome wide homozygosity in EOPD, as measured by an increase in ROHs. These ROHs are a signature of inbreeding and do not necessarily harbour disease-causing genetic variants. Although there might be other regions of interest apart from chromosome 19p13.3, we lack the power to detect them with this analysis.


Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach.

  • John R B Perry‎ et al.
  • Diabetes‎
  • 2009‎

Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci.


Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension.

  • Praveen Surendran‎ et al.
  • Nature genetics‎
  • 2016‎

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.


Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease.

  • Thomas R Webb‎ et al.
  • Journal of the American College of Cardiology‎
  • 2017‎

Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits.


CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1.

  • Elliott Rees‎ et al.
  • Human molecular genetics‎
  • 2014‎

Large and rare copy number variants (CNVs) at several loci have been shown to increase risk for schizophrenia. Aiming to discover novel susceptibility CNV loci, we analyzed 6882 cases and 11 255 controls genotyped on Illumina arrays, most of which have not been used for this purpose before. We identified genes enriched for rare exonic CNVs among cases, and then attempted to replicate the findings in additional 14 568 cases and 15 274 controls. In a combined analysis of all samples, 12 distinct loci were enriched among cases with nominal levels of significance (P < 0.05); however, none would survive correction for multiple testing. These loci include recurrent deletions at 16p12.1, a locus previously associated with neurodevelopmental disorders (P = 0.0084 in the discovery sample and P = 0.023 in the replication sample). Other plausible candidates include non-recurrent deletions at the glutamate transporter gene SLC1A1, a CNV locus recently suggested to be involved in schizophrenia through linkage analysis, and duplications at 1p36.33 and CGNL1. A burden analysis of large (>500 kb), rare CNVs showed a 1.2% excess in cases after excluding known schizophrenia-associated loci, suggesting that additional susceptibility loci exist. However, even larger samples are required for their discovery.


Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23.

  • Gisela Orozco‎ et al.
  • Human molecular genetics‎
  • 2009‎

The most consistent finding derived from the WTCCC GWAS for rheumatoid arthritis (RA) was association to a SNP at 6q23. We performed a fine-mapping of the region in order to search the 6q23 region for additional disease variants. 3962 RA patients and 3531 healthy controls were included in the study. We found 18 SNPs associated with RA. The SNP showing the strongest association was rs6920220 [P = 2.6 x 10(-6), OR (95% CI) 1.22 (1.13-1.33)]. The next most strongly associated SNP was rs13207033 [P = 0.0001, OR (95% CI) 0.86 (0.8-0.93)] which was perfectly correlated with rs10499194, a SNP previously associated with RA in a US/European series. Additionally, we found a number of new potential RA markers, including rs5029937, located in the intron 2 of TNFAIP3. Of the 18 associated SNPs, three polymorphisms, rs6920220, rs13207033 and rs5029937, remained significant after conditional logistic regression analysis. The combination of the carriage of both risk alleles of rs6920220 and rs5029937 together with the absence of the protective allele of rs13207033 was strongly associated with RA when compared with carriage of none [OR of 1.86 (95% CI) (1.51-2.29)]. This equates to an effect size of 1.50 (95% CI 1.21-1.85) compared with controls and is higher than that obtained for any SNP individually. This is the first study to show that the confirmed loci from the GWA studies, that confer only a modest effect size, could harbour a significantly greater effect once the effect of additional risk variants are accounted for.


Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes.

  • John A Todd‎ et al.
  • Nature genetics‎
  • 2007‎

The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan on seven diseases, including the multifactorial autoimmune disease type 1 diabetes (T1D), shows associations at P < 5 x 10(-7) between T1D and six chromosome regions: 12q24, 12q13, 16p13, 18p11, 12p13 and 4q27. Here, we attempted to validate these and six other top findings in 4,000 individuals with T1D, 5,000 controls and 2,997 family trios independent of the WTCCC study. We confirmed unequivocally the associations of 12q24, 12q13, 16p13 and 18p11 (P(follow-up)


The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia.

  • E K Green‎ et al.
  • Molecular psychiatry‎
  • 2010‎

Molecular genetic analysis offers opportunities to advance our understanding of the nosological relationship between psychiatric diagnostic categories in general, and the mood and psychotic disorders in particular. Strong evidence (P=7.0 × 10(-7)) of association at the polymorphism rs1006737 (within CACNA1C, the gene encoding the α-1C subunit of the L-type voltage-gated calcium channel) with the risk of bipolar disorder (BD) has recently been reported in a meta-analysis of three genome-wide association studies of BD, including our BD sample (N=1868) studied within the Wellcome Trust Case Control Consortium. Here, we have used our UK case samples of recurrent major depression (N=1196) and schizophrenia (N=479) and UK non-psychiatric comparison groups (N=15316) to examine the spectrum of phenotypic effect of the bipolar risk allele at rs1006737. We found that the risk allele conferred increased risk for schizophrenia (P=0.034) and recurrent major depression (P=0.013) with similar effect sizes to those previously observed in BD (allelic odds ratio ∼1.15). Our findings are evidence of some degree of overlap in the biological underpinnings of susceptibility to mental illness across the clinical spectrum of mood and psychotic disorders, and show that at least some loci can have a relatively general effect on susceptibility to diagnostic categories, as currently defined. Our findings will contribute to a better understanding of the pathogenesis of major psychiatric illness, and such knowledge should be useful in providing an etiological rationale for shaping psychiatric nosology, which is currently reliant entirely on descriptive clinical data.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: