Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Regulation of T cell differentiation and alloimmunity by the cyclin-dependent kinase inhibitor p18ink4c.

  • Emily A Rowell‎ et al.
  • PloS one‎
  • 2014‎

Cellular proliferation in response to mitogenic stimuli is negatively regulated by the Cip/Kip and the Ink4 families of cyclin-dependent kinase (CDK) inhibitors. Several of these proteins are elevated in anergic T cells, suggesting a potential role in the induction or maintenance of tolerance. Our previous studies showed that p27kip1 is required for the induction of T cell anergy and transplantation tolerance by costimulatory blockade, but a role for Ink4 proteins in these processes has not been established. Here we show that CD4+ T cells from mice genetically deficient for p18ink4c divide more rapidly than wild-type cells in response to antigenic, costimulatory and growth factor signals. However, this gain of proliferative function was accompanied by a moderate increase in the rate of cell death, and was accompanied by an overall defect in the generation of alloreactive IFNγ-producing effector cells. Consistent with this, p18ink4c-deficient T cells were unable to induce graft-vs-host disease in vivo, and p18ink4c deficiency cooperated with costimulatory blockade to significantly increase the survival of fully mismatched allografts in a cardiac transplantation model. While both p18ink4c and p27kip1 act to restrict T cell proliferation, p18ink4c exerts an opposite effect from p27kip1 on alloimmunity and organ transplant rejection, most likely by sustaining T cell survival and the development of effector function. Our studies point to additional important links between the cell cycle machinery and the processes of T cell differentiation, survival and tolerance.


Origin and Role of a Subset of Tumor-Associated Neutrophils with Antigen-Presenting Cell Features in Early-Stage Human Lung Cancer.

  • Sunil Singhal‎ et al.
  • Cancer cell‎
  • 2016‎

Based on studies in mouse tumor models, granulocytes appear to play a tumor-promoting role. However, there are limited data about the phenotype and function of tumor-associated neutrophils (TANs) in humans. Here, we identify a subset of TANs that exhibited characteristics of both neutrophils and antigen-presenting cells (APCs) in early-stage human lung cancer. These APC-like "hybrid neutrophils," which originate from CD11b(+)CD15(hi)CD10(-)CD16(low) immature progenitors, are able to cross-present antigens, as well as trigger and augment anti-tumor T cell responses. Interferon-γ and granulocyte-macrophage colony-stimulating factor are requisite factors in the tumor that, working through the Ikaros transcription factor, synergistically exert their APC-promoting effects on the progenitors. Overall, these data demonstrate the existence of a specialized TAN subset with anti-tumor capabilities in human cancer.


Two lysines in the forkhead domain of foxp3 are key to T regulatory cell function.

  • Yujie Liu‎ et al.
  • PloS one‎
  • 2012‎

The forkhead box transcription factor, Foxp3, is master regulator of the development and function of CD4+CD25+ T regulatory (Treg) cells that limit autoimmunity and maintain immune homeostasis. The carboxyl-terminal forkhead (FKH) domain is required for the nuclear localization and DNA binding of Foxp3. We assessed how individual FKH lysines contribute to the functions of Foxp3 in Treg cells.


Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor.

  • Iris Lee‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Although certain chemokines and their receptors guide homeostatic recirculation of T cells and others promote recruitment of activated T cells to inflammatory sites, little is known of the mechanisms underlying a third function, migration of Foxp3(+) regulatory T (T reg) cells to sites where they maintain unresponsiveness. We studied how T reg cells are recruited to cardiac allografts in recipients tolerized with CD154 monoclonal antibody (mAb) plus donor-specific transfusion (DST). Real-time polymerase chain reaction showed that intragraft Foxp3 levels in tolerized recipients were approximately 100-fold higher than rejecting allografts or allografts associated with other therapies inducing prolonged survival but not tolerance. Foxp3(+) cells were essential for tolerance because pretransplant thymectomy or peritransplant depletion of CD25(+) cells prevented long-term survival, as did CD25 mAb therapy in well-functioning allografts after CD154/DST therapy. Analysis of multiple chemokine pathways showed that tolerance was accompanied by intragraft up-regulation of CCR4 and one of its ligands, macrophage-derived chemokine (CCL22), and that tolerance induction could not be achieved in CCR4(-/-) recipients. We conclude that Foxp3 expression is specifically up-regulated within allografts of mice displaying donor-specific tolerance, that recruitment of Foxp3-expressing T reg cells to an allograft tissue is dependent on the chemokine receptor, CCR4, and that, in the absence of such recruitment, tolerizing strategies such as CD154 mAb therapy are ineffectual.


Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors.

  • Jay H Kalin‎ et al.
  • Nature communications‎
  • 2018‎

Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities.


Lactate Limits T Cell Proliferation via the NAD(H) Redox State.

  • William J Quinn‎ et al.
  • Cell reports‎
  • 2020‎

Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD+), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD+-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression.


HDAC10 deletion promotes Foxp3+ T-regulatory cell function.

  • Satinder Dahiya‎ et al.
  • Scientific reports‎
  • 2020‎

Foxp3+ T-regulatory (Treg) cells are capable of suppressing immune responses. Lysine acetylation is a key mechanism of post-translational control of various transcription factors, and when acetylated, Foxp3 is stabilized and transcriptionally active. Therefore, understanding the roles of various histone/protein deacetylases (HDAC) are key to promoting Treg-based immunotherapy. Several of the 11 classical HDAC enzymes are necessary for optimal Treg function while others are dispensable. We investigated the effect of HDAC10 in murine Tregs. HDAC10 deletion had no adverse effect on the health of mice, which retained normal CD4+ and CD8+ T cell function. However, HDAC10-/- Treg exhibited increased suppressive function in vitro and in vivo. C57BL/6 Rag1-/- mice adoptively transferred with HDAC10-/- but not wild Treg, were protected from developing colitis. HDAC10-/- but not wild-type mice receiving fully MHC-mismatched cardiac transplants became tolerant and showed long-term allograft survival (>100 d). We conclude that targeting of HDAC10 may be of therapeutic value for inflammatory disorders including colitis and also for transplantation.


Complementary Roles of GCN5 and PCAF in Foxp3+ T-Regulatory Cells.

  • Yujie Liu‎ et al.
  • Cancers‎
  • 2019‎

Functions of the GCN5-related N-acetyltransferase (GNAT) family of histone/protein acetyltransferases (HATs) in Foxp3+ T-regulatory (Treg) cells are unexplored, despite the general importance of these enzymes in cell biology. We now show that two prototypical GNAT family members, GCN5 (general control nonrepressed-protein 5, lysine acetyltransferase (KAT)2a) and p300/CBP-associated factor (p300/CBP-associated factor (PCAF), Kat2b) contribute to Treg functions through partially distinct and partially overlapping mechanisms. Deletion of Gcn5 or PCAF did not affect Treg development or suppressive function in vitro, but did affect inducible Treg (iTreg) development, and in vivo, abrogated Treg-dependent allograft survival. Contrasting effects were seen upon targeting of each HAT in all T cells; mice lacking GCN5 showed prolonged allograft survival, suggesting this HAT might be a target for epigenetic therapy in allograft recipients, whereas transplants in mice lacking PCAF underwent acute allograft rejection. PCAF deletion also enhanced anti-tumor immunity in immunocompetent mice. Dual deletion of GCN5 and PCAF led to decreased Treg stability and numbers in peripheral lymphoid tissues, and mice succumbed to severe autoimmunity by 3-4 weeks of life. These data indicate that HATs of the GNAT family have contributions to Treg function that cannot be replaced by the functions of previously characterized Treg HATs (CBP, p300, and Tip60), and may be useful targets in immuno-oncology.


FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3.

  • Liqing Wang‎ et al.
  • The Journal of clinical investigation‎
  • 2015‎

Treg dysfunction is associated with a variety of inflammatory diseases. Treg populations are defined by expression of the oligomeric transcription factor FOXP3 and inability to produce IL-2, a cytokine required for T cell maintenance and survival. FOXP3 activity is regulated post-translationally by histone/protein acetyltransferases and histone/protein deacetylases (HDACs). Here, we determined that HDAC3 mediates both the development and function of the two main Treg subsets, thymus-derived Tregs and induced Tregs (iTregs). We determined that HDAC3 and FOXP3 physically interact and that HDAC3 expression markedly reduces Il2 promoter activity. In murine models, conditional deletion of Hdac3 during thymic Treg development restored Treg production of IL-2 and blocked the suppressive function of Tregs. HDAC3-deficient mice died from autoimmunity by 4-6 weeks of age; however, injection of WT FOXP3+ Tregs prolonged survival. Adoptive transfer of Hdac3-deficient Tregs, unlike WT Tregs, did not control T cell proliferation in naive mice and did not prevent allograft rejection or colitis. HDAC3 also regulated the development of iTregs, as HDAC3-deficient conventional T cells were not converted into iTregs under polarizing conditions and produced large amounts of IL-2, IL-6, and IL-17. We conclude that HDAC3 is essential for the normal development and suppressive functions of thymic and peripheral FOXP3+ Tregs.


Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

  • Min Peng‎ et al.
  • PLoS genetics‎
  • 2008‎

Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd) genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd) mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP) knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP) knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.


Resistance of Foxp3+ regulatory T cells to Nur77-induced apoptosis promotes allograft survival.

  • Ran Tao‎ et al.
  • PloS one‎
  • 2008‎

The NR4A nuclear receptor family member Nur77 (NR4A1) promotes thymocyte apoptosis during negative selection of autoreactive thymocytes, but may also function in mature extrathymic T cells. We studied the effects of over-expression of Nur77 on the apoptosis of murine peripheral T cells, including thymic-derived Foxp3+ regulatory (Treg) cells. Overexpression of Nur77 in the T cell lineage decreased numbers of peripheral CD4 and CD8 T cells by approximately 80% compared to wild-type (WT) mice. However, the proportions of Treg cells were markedly increased in the thymus (61% of CD4+Foxp3+ singly positive thymocytes vs. 8% in WT) and secondary lymphoid organs (40-50% of CD4+Foxp3+ T cells vs. 7-8% in WT) of Nur77 transgenic (Nur77Tg) mice, and immunoprecipitation studies showed Nur77 was associated with a recently identified HDAC7/Foxp3 transcriptional complex. Upon activation through the T cell receptor in vitro or in vivo, Nur77Tg T cells showed only marginally decreased proliferation but significantly increased apoptosis. Fully allogeneic cardiac grafts transplanted to Nur77Tg mice survived long-term with well-preserved structure, and recipient splenocytes showed markedly enhanced apoptosis and greatly reduced anti-donor recall responses. Allografts in Nur77Tg recipients had significantly increased expression of multiple Treg-associated genes, including Foxp3, Foxp1, Tip60 and HDAC9. Allograft rejection was restored by CD25 monoclonal antibody therapy, indicating that allograft acceptance was dependent upon Treg function in Nur77Tg recipients. These data show that compared to conventional CD4 and CD8 T cells, Foxp3+ Tregs are relatively resistant to Nur77-mediated apoptosis, and that tipping the balance between the numbers of Tregs and responder T cells in the early period post-transplantation can determine the fate of the allograft. Hence, induced expression of Nur77 might be a novel means to achieve long-term allograft survival.


Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity.

  • Liqing Wang‎ et al.
  • EBioMedicine‎
  • 2016‎

Foxp3+ T-regulatory (Treg) cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or "secondary" modulation, e.g. using anti-CTLA-4 monoclonal antibody. Our ongoing studies of the post-translational modifications that regulate Foxp3 demonstrated that the histone/protein acetyltransferase, Tip60, plays a dominant role in promoting acetylation, dimerization and function in Treg cells. We now show that the ubiquitin-specific protease, Usp7, controls Treg function largely by stabilizing the expression and promoting the multimerization of Tip60 and Foxp3. Genetic or pharmacologic targeting of Usp7 impairs Foxp3+ Treg suppressive functions, while conventional T cell responses remain intact. As a result, pharmacologic inhibitors of Usp7 can limit tumor growth in immunocompetent mice, and promote the efficacy of antitumor vaccines and immune checkpoint therapy with anti-PD1 monoclonal antibody in murine models. Hence, pharmacologic therapy with Usp7 inhibitors may have an important role in future cancer immunotherapy.


Donor bone-marrow CXCR4+ Foxp3+ T-regulatory cells are essential for costimulation blockade-induced long-term survival of murine limb transplants.

  • Liqing Wang‎ et al.
  • Scientific reports‎
  • 2020‎

Vascularized composite allotransplantation (VCA) allows tissue replacement after devastating loss but is currently limited in application and may be more widely performed if maintenance immunosuppression was not essential for graft acceptance. We tested whether peri-transplant costimulation blockade could prolong VCA survival and required donor bone-marrow cells, given that bone-marrow might promote graft immunogenicity or graft-versus-host disease. Peritransplant CD154 mAb/rapamycin (RPM) induced long-term orthotopic hindlimb VCA survival (BALB/c->C57BL/6), as did CTLA4Ig/RPM. Surprisingly, success of either protocol required a bone-marrow-associated, radiation-sensitive cell population, since long-bone removal or pre-transplant donor irradiation prevented long-term engraftment. Rejection also occurred if Rag1-/- donors were used, or if donors were treated with a CXCR4 inhibitor to mobilize donor BM cells pre-transplant. Donor bone-marrow contained a large population of Foxp3+ T-regulatory (Treg) cells, and donor Foxp3+ Treg depletion, by diphtheria toxin administration to DEREG donor mice whose Foxp3+ Treg cells expressed diphtheria toxin receptor, restored rejection with either protocol. Rejection also occurred if CXCR4 was deleted from donor Tregs pre-transplant. Hence, long-term VCA survival is possible across a full MHC disparity using peritransplant costimulation blockade-based approaches, but unexpectedly, the efficacy of costimulation blockade requires the presence of a radiation-sensitive, CXCR4+ Foxp3+ Treg population resident within donor BM.


The Effects of Tacrolimus on T-Cell Proliferation Are Short-Lived: A Pilot Analysis of Immune Function Testing.

  • Benjamin L Laskin‎ et al.
  • Transplantation direct‎
  • 2017‎

Optimal immunosuppression after organ transplant should balance the risks of rejection, infection, and malignancy while minimizing barriers to adherence including frequent or time-sensitive dosing. There is currently no reliable immune function assay to directly measure the degree of immunosuppression after transplantation.


Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs.

  • Tatiana Akimova‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2010‎

Histone/protein deacetylases (HDACs) decrease histone and protein acetylation, typically leading to suppression of gene transcription and modulation of various protein functions. We found significant differences in expression of HDAC before and after stimulation of human T regulatory (Treg) and T effector cells, suggesting the potential for future selective targeting of Tregs with HDAC inhibitors (HDACi). Use of various HDACi small molecules enhanced, by up to 4.5-fold (average 2-fold), the suppressive functions of both freshly isolated and expanded human Tregs, consistent with our previous murine data. HDACi use increased Treg expression of CTLA-4, a key negative regulator of immune response, and we found a direct and significant correlation between CTLA-4 expression and Treg suppression. Hence, HDACi compounds are promising pharmacologic tools to increase Treg suppressive functions, and this action may potentially be of use in patients with autoimmunity or post-transplantation.


Three distinct domains contribute to nuclear transport of murine Foxp3.

  • Wayne W Hancock‎ et al.
  • PloS one‎
  • 2009‎

Foxp3, a 47-kDa transcription factor, is necessary for the function of CD4+CD25+ regulatory T cells (Tregs), with an essential role in the control of self-reactive T cells and in preventing autoimmunity. Activation of Tregs by TCR engagement results in upregulation of Foxp3 expression, followed by its rapid nuclear transport and binding to chromatin. Here, we identify three distinct Foxp3 domains that contribute to nuclear transport. The first domain (Domain 1) comprises the C-terminal 12 amino acids. The second domain (Domain 2) is located immediately N-terminal to the forkhead domain (FHD), recently reported to be a binding site for the runt-related transcription factor 1/acute myeloid leukemia 1 (Runx1/AML1). The third domain (Domain 3) is located within the N-terminal first 51 amino acids. Unlike the known nuclear localization signals (NLSs), none of these three regions are rich in basic residues and do not bear any similarity to known monopartite or bipartite NLSs that have one or more clusters of basic amino acids. The basic arginine-lysine-lysine-arginine (RKKR) sequence, located 12-aa from the C-terminal end of Foxp3 was previously reported to be a nuclear localization signal (NLS) for several proteins, including for a GFP-Foxp3 hybrid. Evidence is provided here that in the full-length native Foxp3 RKKR does not function as an NLS. The data reported in this study indicates that Foxp3 achieves nuclear transport by binding to other nuclear factors and co-transporting with them to the nucleus.


Delayed and deficient dermal maturation in mice lacking the CXCR3 ELR-negative CXC chemokine receptor.

  • Cecelia C Yates‎ et al.
  • The American journal of pathology‎
  • 2007‎

Replacement of wounded skin requires the initially florid cellular response to abate and even regress as the dermal layer returns to a relatively paucicellular state. The signals that direct this "stop and return" process have yet to be deciphered. CXCR3 chemokine receptor and its ligand CXCL11/IP-9/I-TAC are expressed by basal keratinocytes and CXCL10/IP-10 by keratinocytes and endothelial cells during wound healing in mice and humans. In vitro, these ligands limit motility in dermal fibroblasts and endothelial cells. To examine whether this signaling pathway contributes to wound healing in vivo, full-thickness excisional wounds were created on CXCR3 wild-type (+/+) or knockout (-/-) mice. Even at 90 days, long after wound closure, wounds in the CXCR3(-/-) mice remained hypercellular and presented immature matrix components. The CXCR3(-/-) mice also presented poor remodeling and reorganization of collagen, which resulted in a weakened healed dermis. This in vivo model substantiates our in vitro findings that CXCR3 signaling is necessary for inhibition of fibroblast and endothelial cell migration and subsequent redifferentiation of the fibroblasts to a contractile state. These studies establish a pathophysiologic role for CXCR3 and its ligand during wound repair.


A Biological Circuit Involving Mef2c, Mef2d, and Hdac9 Controls the Immunosuppressive Functions of CD4+Foxp3+ T-Regulatory Cells.

  • Eros Di Giorgio‎ et al.
  • Frontiers in immunology‎
  • 2021‎

The Mads/Mef2 (Mef2a/b/c/d) family of transcription factors (TFs) regulates differentiation of muscle cells, neurons and hematopoietic cells. By functioning in physiological feedback loops, Mef2 TFs promote the transcription of their repressor, Hdac9, thereby providing temporal control of Mef2-driven differentiation. Disruption of this feedback is associated with the development of various pathologic states, including cancer. Beside their direct involvement in oncogenesis, Mef2 TFs indirectly control tumor progression by regulating antitumor immunity. We recently reported that in CD4+CD25+Foxp3+ T-regulatory (Treg) cells, Mef2d is required for the acquisition of an effector Treg (eTreg) phenotype and for the activation of an epigenetic program that suppresses the anti-tumor immune responses of conventional T and B cells. We now report that as with Mef2d, the deletion of Mef2c in Tregs switches off the expression of Il10 and Icos and leads to enhanced antitumor immunity in syngeneic models of lung cancer. Mechanistically, Mef2c does not directly bind the regulatory elements of Icos and Il10, but its loss-of-function in Tregs induces the expression of the transcriptional repressor, Hdac9. As a consequence, Mef2d, the more abundant member of the Mef2 family, is converted by Hdac9 into a transcriptional repressor on these loci. This leads to the impairment of Treg suppressive properties in vivo and to enhanced anti-cancer immunity. These data further highlight the central role played by the Mef2/Hdac9 axis in the regulation of CD4+Foxp3+ Treg function and adds a new level of complexity to the analysis and study of Treg biology.


Kynurenine induces T cell fat catabolism and has limited suppressive effects in vivo.

  • Peter J Siska‎ et al.
  • EBioMedicine‎
  • 2021‎

L-kynurenine is a tryptophan-derived immunosuppressive metabolite and precursor to neurotoxic anthranilate and quinolinate. We evaluated the stereoisomer D-kynurenine as an immunosuppressive therapeutic which is hypothesized to produce less neurotoxic metabolites than L-kynurenine.


Human neutrophils can mimic myeloid-derived suppressor cells (PMN-MDSC) and suppress microbead or lectin-induced T cell proliferation through artefactual mechanisms.

  • Dmitri Negorev‎ et al.
  • Scientific reports‎
  • 2018‎

We report that human conventional CD15+ neutrophils can be isolated in the peripheral blood mononuclear cell (PBMC) layer during Ficoll gradient separation, and that they can impair T cell proliferation in vitro without concomitant neutrophil activation and killing. This effect was observed in a total of 92 patients with organ transplants, lung cancer or anxiety/depression, and in 18 healthy donors. Although such features are typically associated in the literature with the presence of certain myeloid-derived suppressor cell (PMN-MDSC) populations, we found that commercial centrifuge tubes that contained membranes or gels for PBMC isolation led to up to 70% PBMC contamination by CD15+ neutrophils, with subsequent suppressive effects in certain cellular assays. In particular, the suppressive activity of human MDSC should not be evaluated using lectin or microbead stimulation, whereas assays involving soluble or plate-bound antibodies or MLR are unaffected. We conclude that CD15+ neutrophil contamination, and associated effects on suppressor assays, can lead to significant artefacts in studies of human PMN-MDSC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: