Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Hypermethylation in the ZBTB20 gene is associated with major depressive disorder.

  • Matthew N Davies‎ et al.
  • Genome biology‎
  • 2014‎

Although genetic variation is believed to contribute to an individual's susceptibility to major depressive disorder, genome-wide association studies have not yet identified associations that could explain the full etiology of the disease. Epigenetics is increasingly believed to play a major role in the development of common clinical phenotypes, including major depressive disorder.


Genome-wide meta-analysis identifies new susceptibility loci for migraine.

  • Verneri Anttila‎ et al.
  • Nature genetics‎
  • 2013‎

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.


Volumetric GWAS of medial temporal lobe structures identifies an ERC1 locus using ADNI high-resolution T2-weighted MRI data.

  • Shan Cong‎ et al.
  • Neurobiology of aging‎
  • 2020‎

Medial temporal lobe (MTL) consists of hippocampal subfields and neighboring cortices. These heterogeneous structures are differentially involved in memory, cognitive and emotional functions, and present nonuniformly distributed atrophy contributing to cognitive disorders. This study aims to examine how genetics influences Alzheimer's disease (AD) pathogenesis via MTL substructures by analyzing high-resolution magnetic resonance imaging (MRI) data. We performed genome-wide association study to examine the associations between 565,373 single nucleotide polymorphisms (SNPs) and 14 MTL substructure volumes. A novel association with right Brodmann area 36 volume was discovered in an ERC1 SNP (i.e., rs2968869). Further analyses on larger samples found rs2968869 to be associated with gray matter density and glucose metabolism measures in the right hippocampus, and disease status. Tissue-specific transcriptomic analysis identified the minor allele of rs2968869 (rs2968869-C) to be associated with reduced ERC1 expression in the hippocampus. All the findings indicated a protective role of rs2968869-C in AD. We demonstrated the power of high-resolution MRI and the promise of fine-grained MTL substructures for revealing the genetic basis of AD biomarkers.


Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

  • Lilach Soreq‎ et al.
  • Cell reports‎
  • 2017‎

Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases.


Identification of expression quantitative trait loci associated with schizophrenia and affective disorders in normal brain tissue.

  • Oneil G Bhalala‎ et al.
  • PLoS genetics‎
  • 2018‎

Schizophrenia and the affective disorders, here comprising bipolar disorder and major depressive disorder, are psychiatric illnesses that lead to significant morbidity and mortality worldwide. Whilst understanding of their pathobiology remains limited, large case-control studies have recently identified single nucleotide polymorphisms (SNPs) associated with these disorders. However, discerning the functional effects of these SNPs has been difficult as the associated causal genes are unknown. Here we evaluated whether schizophrenia and affective disorder associated-SNPs are correlated with gene expression within human brain tissue. Specifically, to identify expression quantitative trait loci (eQTLs), we leveraged disorder-associated SNPs identified from 11 genome-wide association studies with gene expression levels in post-mortem, neurologically-normal tissue from two independent human brain tissue expression datasets (UK Brain Expression Consortium (UKBEC) and Genotype-Tissue Expression (GTEx)). Utilizing stringent multi-region meta-analyses, we identified 2,224 cis-eQTLs associated with expression of 40 genes, including 11 non-coding RNAs. One cis-eQTL, rs16969968, results in a functionally disruptive missense mutation in CHRNA5, a schizophrenia-implicated gene. Importantly, comparing across tissues, we find that blood eQTLs capture < 10% of brain cis-eQTLs. Contrastingly, > 30% of brain-associated eQTLs are significant in tibial nerve. This study identifies putatively causal genes whose expression in region-specific tissue may contribute to the risk of schizophrenia and affective disorders.


Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy.

  • Raffaele Ferrari‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Progressive supranuclear palsy is a rare parkinsonian disorder with characteristic neurofibrillary pathology consisting of hyperphosphorylated tau protein. Common variation defining the microtubule associated protein tau gene (MAPT) H1 haplotype strongly contributes to disease risk. A recent genome-wide association study (GWAS) revealed 3 novel risk loci on chromosomes 1, 2, and 3 that primarily implicate STX6, EIF2AK3, and MOBP, respectively. Genetic associations, however, rarely lead to direct identification of the relevant functional allele. More often, they are in linkage disequilibrium with the causative polymorphism(s) that could be a coding change or affect gene expression regulatory motifs. To identify any such changes, we sequenced all coding exons of those genes directly implicated by the associations in progressive supranuclear palsy cases and analyzed regional gene expression data from control brains to identify expression quantitative trait loci within 1 Mb of the risk loci. Although we did not find any coding variants underlying the associations, GWAS-associated single-nucleotide polymorphisms at these loci are in complete linkage disequilibrium with haplotypes that completely overlap with the respective genes. Although implication of EIF2AK3 and MOBP could not be fully assessed, we show that the GWAS single-nucleotide polymorphism rs1411478 (STX6) is a strong expression quantitative trait locus with significantly lower expression of STX6 in white matter in carriers of the risk allele.


Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A.

  • Dalia Kasperaviciute‎ et al.
  • Brain : a journal of neurology‎
  • 2013‎

Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.


Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders.

  • Niccolò E Mencacci‎ et al.
  • Brain : a journal of neurology‎
  • 2020‎

Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships among dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from 10 human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson's disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, 4 of 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrate significant enrichments of the heritability of major depressive disorder, obsessive-compulsive disorder and schizophrenia within the putamen and white matter modules, and a significant enrichment of the heritability of Parkinson's disease within the substantia nigra module. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: