Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Combined Treatment with Exendin-4 and Metformin Attenuates Prostate Cancer Growth.

  • Yoko Tsutsumi‎ et al.
  • PloS one‎
  • 2015‎

Recently, the pleiotropic benefits of incretin-based therapy have been reported. We have previously reported that Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, attenuates prostate cancer growth. Metformin is known for its anti-cancer effect. Here, we examined the anti-cancer effect of Exendin-4 and metformin using a prostate cancer model.


Combined treatment with DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice.

  • Hiroyuki Takahashi‎ et al.
  • Biochemistry and biophysics reports‎
  • 2019‎

Incretin therapy has emerged as one of the most popular medications for type 2 diabetes. We have previously reported that the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin attenuates neointima formation after vascular injury in non-diabetic mice. In the present study, we examined whether combined treatment with linagliptin and the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin attenuates neointima formation in diabetic mice after vascular injury. Diabetic db/db mice were treated with 3 mg/kg/day linagliptin and/or 30 mg/kg/day empagliflozin from 5 to 10 weeks of age. Body weight was significantly decreased by empagliflozin and the combined treatment. Blood glucose levels and glucose tolerance test results were significantly improved by empagliflozin and the combined treatment, but not by linagliptin. An insulin tolerance test suggested that linagliptin and empagliflozin did not improve insulin sensitivity. In a model of guidewire-induced femoral artery injury in diabetic mice, neointima formation was significantly decreased in mice subjected to combined treatment. In an in vitro assay using rat aortic smooth muscle cells (RASMC), 100, 500, or 1000 nM empagliflozin significantly decreased the RASMC number in a dose-dependent manner. A further significant reduction in RASMC proliferation was observed after combined treatment with 10 nM linagliptin and 100 nM empagliflozin. These data suggest that combined treatment with the DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice in vivo and smooth muscle cell proliferation in vitro.


miR-4463 regulates aromatase expression and activity for 17β-estradiol synthesis in response to follicle-stimulating hormone.

  • Su-Yeon Lee‎ et al.
  • Clinical and experimental reproductive medicine‎
  • 2020‎

The aim of this study was to investigate microRNAs (miRNAs) related to follicle-stimulating hormone (FSH) responsiveness using miRNA microarrays and to identify their target genes to determine the molecular regulatory pathways involved in FSH signaling in KGN cells.


Extension of Survival in Bilaterally Adrenalectomized Mice by Implantation of SF-1/Ad4BP-Induced Steroidogenic Cells.

  • Tomoko Tanaka‎ et al.
  • Endocrinology‎
  • 2020‎

Mesenchymal stroma/stem cells (MSCs) exist in adult tissues, such as adipose tissue and bone marrow, and differentiate into cells of multiple lineages. In previous studies, we found that MSCs differentiate into steroidogenic cells by forced expression of steroidogenic factor 1 (SF-1)/adrenal 4 binding protein (Ad4BP), the master regulator of steroidogenesis and differentiation of pituitary gonadotrophs, adrenal glands, and gonads. In this study, SF-1/Ad4BP-induced steroidogenic cells derived from mouse adipose tissue-derived MSCs (ADSCs) were implanted under the kidney capsule of bilateral adrenalectomized (bAdx) mice. bAdx mice did not survive after 7 days. However, 4 of 9 bAdx mice implanted with SF-1/Ad4BP-induced steroidogenic cells, 1 of 10 bAdx mice transplanted with control ADSCs, and bAdx mice transplanted with an adrenal gland survived for 30 days. Plasma corticosterone levels in bAdx mice implanted with SF-1/Ad4BP-induced steroidogenic cells and control ADSCs were 5.41 ± 2.26 ng/mL (mean ± SEM) and undetectable at 7 days after implantation, respectively. After removal of the kidney bearing the graft from the surviving mice at 30 days after implantation, plasma corticosterone was not detected in any of the samples. Immunohistochemical staining revealed SF-1/Ad4BP-positive cells under the capsule of the kidney. Although we performed an adrenocorticotropin (ACTH) loading test on bAdx mice implanted with SF-1/Ad4BP-induced steroidogenic cells, ACTH responsiveness was not observed. Implantation of steroidogenic cells derived from ADSCs into bAdx mice increased the basal plasma corticosterone level and extended the survival of bAdx mice, suggesting the capability of restoring steroidogenic cells by cell transplantation therapy for adrenal insufficiency.


High-mobility group box 2 protein is essential for the early phase of adipogenesis.

  • Hidetaka Morinaga‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Understanding of the mechanism of adipogenesis is essential for the control of obesity, which predisposes toward numerous health problems. High-mobility group box protein 2 (HMGB2) is a non-histone chromosomal protein that facilitates DNA replication, transcription, recombination, and repair. Here, we studied the role of HMGB2 in adipogenic differentiation. The expression of HMGB2 was measured at the mRNA and protein levels in cultured 3T3-L1 pre-adipocyte cells and during the process of adipogenic differentiation induced bya cocktail of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone. This increased in the early phase and decreased in the late phase of differentiation. However, 3T3-L1 pre-adipocyte cells did not differentiate into adipocytes after the knockdown of HMGB2 expression by small interfering RNA (siRNA). Similarly, mesenchymal stem cells (MSCs) isolated from Hmgb2-/- mice did not express peroxisome proliferator-activated receptor gamma (PPARγ) in response to the adipocyte differentiation cocktail and did not differentiate. Wnt/β-catenin signaling is a negative regulator of adipogenic differentiation. We found that β-catenin expression was downregulated during 3T3-L1 adipogenic differentiation, as expected, but not when endogenous HMBG2 expression was knocked down using siRNA. These results indicate that HMGB2 plays an essential role in the early phase of the differentiation of pre-adipocytes and MSCs, and probably interacts with other regulators, such as PPARγ and Wnt/β-catenin signaling.


Inhibition of proteasome activity sensitizes human granulosa tumor cells to TRAIL-induced cell death.

  • Dori C Woods‎ et al.
  • Cancer letters‎
  • 2008‎

Human granulosa tumor cell (GCT) lines (KGN and COV434) were utilized to establish the combinatorial effects of TRAIL treatment and a proteasome inhibitor on cell viability, in vitro. TRAIL induced a slight, but consistent, decrease in viability for both cell lines, and pharmacologic inhibition of proteasome activity, using Z-LLF-CHO (Z-LLF), synergistically enhanced TRAIL-induced loss of viability. This enhanced sensitization was associated with the up-regulation of a TRAIL receptor, DR5, and pro-apoptotic Bax. Targeted reduction of p53 expression revealed that the ability of Z-LLF to enhance DR5 and Bax expression occurs independent of p53 activity. These studies underscore the potential to develop targeted treatments for GCTs using established cell lines.


Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans.

  • WuQiang Fan‎ et al.
  • Environmental health perspectives‎
  • 2007‎

Atrazine is a potent endocrine disruptor that increases aromatase expression in some human cancer cell lines. The mechanism involves the inhibition of phosphodiesterase and subsequent elevation of cAMP.


Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line.

  • Takashi Fukuda‎ et al.
  • PloS one‎
  • 2016‎

Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH3, GH3-FTY cells showed remarkably increased Gh production and a slight increase in cell proliferation. Gh-induced Stat3 phosphorylation is known to be a mechanism of Gh oversecretion in GH3. Interestingly, phosphorylated-Stat3 expression in GH3-FTY cells was increased more compared with GH3 cells, suggesting a stronger drive for this mechanism in GH3-FTY. The phenotypes of GH3-FTY concerning Gh overproduction, cell proliferation, and increased Stat3 phosphorylation were significantly reversed by the exogenous expression of Aip. GH3-FTY cells were less sensitive to somatostatin than GH3 cells in the suppression of cell proliferation, which might be associated with the reduced expression of somatostatin receptor type 2. GH3-FTY xenografts in BALB/c nude mice (GH3-FTY mice) formed more mitotic somatotroph tumors than GH3 xenografts (GH3 mice), as also evidenced by increased Ki67 scores. GH3-FTY mice were also much larger and had significantly higher plasma Gh levels than GH3 mice. Furthermore, GH3-FTY mice showed relative insulin resistance compared with GH3 mice. In conclusion, we established a somatotroph cell line, GH3-FTY, which possessed prominent Gh secretion and mitotic features associated with the disruption of Aip.


Selective androgen receptor modulator, S42 has anabolic and anti-catabolic effects on cultured myotubes.

  • Yoshimi Muta‎ et al.
  • Biochemistry and biophysics reports‎
  • 2019‎

We previously identified a novel selective androgen receptor modulator, S42, that does not stimulate prostate growth but has a beneficial effect on lipid metabolism. S42 also increased muscle weight of the levator ani in orchiectomized Sprague-Dawley rats. These findings prompted us to investigate whether S42 has a direct effect on cultured C2C12 myotubes. S42 significantly lowered expression levels of the skeletal muscle ubiquitin ligase (muscle atrophy-related gene), atrogin1 and Muscle RING-Finger Protein 1(MuRF1) in C2C12 myotubes, as determined by real time PCR. Phosphorylation of p70 S6 kinase (p70S6K), an essential factor for promoting protein synthesis in skeletal muscle, was significantly increased by S42 to almost the same extent as by insulin, but this was significantly prevented by treatment with rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). However, phosphorylation of Akt, upstream regulator of mTORC1, was not changed by S42. S42 did not increase insulin-like growth factor 1 (Igf1) mRNA levels in C2C12 myotubes. These results suggest that S42 may have an anabolic effect through activation of mTORC1-p70S6K signaling, independent of IGF-1-Akt signaling and may exert an anti-catabolic effect through inhibition of the degradation pathway in cultured C2C12 myotubes.


Dipeptidyl peptidase-4 inhibitor linagliptin attenuates neointima formation after vascular injury.

  • Yuichi Terawaki‎ et al.
  • Cardiovascular diabetology‎
  • 2014‎

Recently, glucagon-like peptide-1 (GLP-1)-based therapy, including dipeptidyl peptidase-4 (DPP-4) inhibitors and GLP-1 receptor agonists, has emerged as one of the most popular anti-diabetic therapies. Furthermore, GLP-1-based therapy has attracted increased attention not only for its glucose-lowering ability, but also for its potential as a tissue-protective therapy. In this study, we investigated the vascular-protective effect of the DPP-4 inhibitor, linagliptin, using vascular smooth muscle cells (VSMCs).


HMGA1a Induces Alternative Splicing of the Estrogen Receptor-αlpha Gene by Trapping U1 snRNP to an Upstream Pseudo-5' Splice Site.

  • Kenji Ohe‎ et al.
  • Frontiers in molecular biosciences‎
  • 2018‎

Objectives: The high-mobility group A protein 1a (HMGA1a) protein is known as a transcription factor that binds to DNA, but recent studies have shown it exerts novel functions through RNA-binding. We were prompted to decipher the mechanism of HMGA1a-induced alternative splicing of the estrogen receptor alpha (ERα) that we recently reported would alter tamoxifen sensitivity in MCF-7 TAMR1 cells. Methods: Endogenous expression of full length ERα66 and its isoform ERα46 were evaluated in MCF-7 breast cancer cells by transient expression of HMGA1a and an RNA decoy (2'-O-methylated RNA of the HMGA1a RNA-binding site) that binds to HMGA1a. RNA-binding of HMGA1a was checked by RNA-EMSA. In vitro splicing assay was performed to check the direct involvement of HMGA1a in splicing regulation. RNA-EMSA assay in the presence of purified U1 snRNP was performed with psoralen UV crosslinking to check complex formation of HMGA1a-U1 snRNP at the upstream pseudo-5' splice site of exon 1. Results: HMGA1a induced exon skipping of a shortened exon 1 of ERα in in vitro splicing assays that was blocked by the HMGA1a RNA decoy and sequence-specific RNA-binding was confirmed by RNA-EMSA. RNA-EMSA combined with psoralen UV crosslinking showed that HMGA1a trapped purified U1 snRNP at the upstream pseudo-5' splice site. Conclusions: Regulation of ERα alternative splicing by an HMGA1a-trapped U1 snRNP complex at the upstream 5' splice site of exon 1 offers novel insight on 5' splice site regulation by U1 snRNP as well as a promising target in breast cancer therapy where alternative splicing of ERα is involved.


Functional characterization of a new human Ad4BP/SF-1 variation, G146A.

  • Fan WuQiang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

Ad4BP/SF-1 plays key roles at all levels of the hypothalamic-pituitary-steroidogenic organ axis and its functional disruption causes endocrine disorders of these organs. However, only three human subjects with Ad4BP/SF-1 mutations have been reported to date, suggesting limited clinical significance as a cause of inborn adrenal or sexual abnormalities. We report the first functional characterization of a new variation found in the hinge region of human Ad4BP/SF-1, G146A. Resulting from a single nucleotide shift (GGG-->GCG), G146A bears slightly diminished transactivation activity evidenced by both adrenal specific cyp11A promoter and ovary specific cyp19 promoter II. The variation does not affect protein expression or stability, exhibiting no dominant negative effect. G146A has a normal interaction pattern with standard co-regulators and subnuclear distribution pattern, and can be considered as a nonsynonymous single nucleotide polymorphism, since it occurs in normals and patients with adrenal diseases. In normal Japanese the allele C frequency is 8%, while in a preliminary population of patients with adrenal diseases it is elevated to 30%; suggesting the G146A variation might be of clinical importance.


A High Serum Cortisol/DHEA-S Ratio Is a Risk Factor for Sarcopenia in Elderly Diabetic Patients.

  • Ikumi Yanagita‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Elderly patients with type 2 diabetes mellitus (T2DM) have a high prevalence of frailty and/or sarcopenia. Sarcopenia is thought to be related to discordant secretions of the adrenal hormones cortisol and dehydroepiandrosterone (DHEA), as well as the sulfate ester of DHEA (DHEA-S). The current study sought to evaluate the risk factors for sarcopenia in elderly patients with T2DM.


Pemafibrate, a PPAR alpha agonist, attenuates neointima formation after vascular injury in mice fed normal chow and a high-fat diet.

  • Tsuyoshi Horikawa‎ et al.
  • Heliyon‎
  • 2020‎

Recently, the prevention of cardiovascular events has become one of the most important aims of diabetes care. Peroxisome proliferator-activated receptor (PPAR) agonists have been reported to have vascular protective effects. Here, we examined whether pemafibrate, a selective PPAR alpha agonist, attenuated neointima formation after vascular injury and vascular smooth muscle cell (VSMC) proliferation. We performed endothelial denudation injury in mice treated with a high-fat diet (HFD) or normal chow. Orally administered pemafibrate significantly attenuated neointima formation after vascular injury in HFD and normal chow mice. Interestingly, pemafibrate increased the serum fibroblast growth factor 21 concentration and decreased serum insulin concentrations in HFD mice. In addition, body weight was slightly but significantly decreased by pemafibrate in HFD mice. Pemafibrate, but not bezafibrate, attenuated VSMC proliferation in vitro. The knockdown of PPAR alpha abolished the anti-VSMC proliferation effect of pemafibrate. BrdU assay results revealed that pemafibrate dose-dependently inhibited DNA synthesis in VSMCs. Flow cytometry analysis demonstrated that G1-to-S phase cell cycle transition was significantly inhibited by pemafibrate. Pemafibrate attenuated serum-induced cyclin D1 expression in VSMCs. However, apoptosis was not induced by pemafibrate as assessed by the TUNEL assay. Similar to the in vitro data, VSMC proliferation was also decreased by pemafibrate in mice. These data suggest that pemafibrate attenuates neointima formation after vascular injury and VSMC proliferation by inhibiting cell cycle progression.


Activation of overexpressed glucagon-like peptide-1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression.

  • Toru Shigeoka‎ et al.
  • Journal of diabetes investigation‎
  • 2020‎

Incretin therapy is a common treatment for type 2 diabetes mellitus. We have previously reported an anti-prostate cancer effect of glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4. The attenuation of cell proliferation in the prostate cancer cell line was dependent on GLP-1R expression. Here, we examined the relationship between human prostate cancer severity and GLP-1R expression, as well as the effect of forced expression of GLP-1R using a lentiviral vector.


Prescription of oral hypoglycemic agents for patients with type 2 diabetes mellitus: A retrospective cohort study using a Japanese hospital database.

  • Makito Tanabe‎ et al.
  • Journal of diabetes investigation‎
  • 2017‎

In treatment algorithms of type 2 diabetes mellitus in Western countries, biguanides are recommended as first-line agents. In Japan, various oral hypoglycemic agents (OHAs) are available, but prescription patterns are unclear.


A novel mutation of CLCNKB in a Japanese patient of Gitelman-like phenotype with diuretic insensitivity to thiazide administration.

  • Kumiko Ohkubo‎ et al.
  • Meta gene‎
  • 2014‎

The clinical phenotypes of patients with Bartter syndrome type III sometimes closely resemble those of Gitelman syndrome. We report a patient with mild, adult-onset symptoms, such as muscular weakness and fatigue, who showed hypokalemic metabolic alkalosis, elevated renin-aldosterone levels with normal blood pressure, hypocalciuria and hypomagnesemia. She was also suffering from chondrocalcinosis. A diuretic test with furosemide and thiazide showed a good response to furosemide, but little response to thiazide. Although the clinical findings and diuretic tests predicted that the patient had Gitelman syndrome, genetic analysis found no mutation in SLC12A3. However, a novel missense mutation, p.L647F in CLCNKB, which is located in the CBS domain at the C-terminus of ClC-Kb, was discovered. Therefore, gene analyses of CLCNKB and SLC12A3 might be necessary to elucidate the precise etiology of the salt-losing tubulopathies regardless of the results of diuretic tests.


Roles for corticotropin-releasing factor receptor type 1 in energy homeostasis in mice.

  • Ryuichi Sakamoto‎ et al.
  • Metabolism: clinical and experimental‎
  • 2013‎

Expression of corticotropin-releasing factor type 1 receptor (CRFR1) has been shown on pancreatic β cells, and its activation potentiates glucose-stimulated insulin secretion (GSIS). However, the roles of CRFR1 in energy metabolism beyond insulin release remain elusive.


Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells.

  • Yu Zhang‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2010‎

Homeobox (HOX) genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited.


Inhibitor of apoptosis proteins are potential targets for treatment of granulosa cell tumors - implications from studies in KGN.

  • Konstantin Bagnjuk‎ et al.
  • Journal of ovarian research‎
  • 2019‎

Granulosa cell tumors (GCTs) are derived from proliferating granulosa cells of the ovarian follicle. They are known for their late recurrence and most patients with an aggressive form die from their disease. There are no treatment options for this slowly proliferating tumor besides surgery and chemotherapy. In a number of tumors, analogs of the second mitochondria-derived activator of caspases (SMAC), alone or in combination with other molecules, such as TNFα, are evolving as new treatment options. SMAC mimetics block inhibitor of apoptosis proteins (IAPs), which bind caspases (e.g. XIAP), or activate the pro-survival NF-κB pathway (e.g. cIAP1/2). Expression of IAPs by GCTs is yet not fully elucidated but recently XIAP and its inhibition by SMAC mimetics in a combination therapy was described to induce apoptosis in a GCT cell line, KGN. We evaluated the expression of cIAP1 in GCTs and elucidated the effects of the SMAC mimetic BV-6 using KGN as a model.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: