Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

Honey bee Royalactin unlocks conserved pluripotency pathway in mammals.

  • Derrick C Wan‎ et al.
  • Nature communications‎
  • 2018‎

Royal jelly is the queen-maker for the honey bee Apis mellifera, and has cross-species effects on longevity, fertility, and regeneration in mammals. Despite this knowledge, how royal jelly or its components exert their myriad effects has remained poorly understood. Using mouse embryonic stem cells as a platform, here we report that through its major protein component Royalactin, royal jelly can maintain pluripotency by activating a ground-state pluripotency-like gene network. We further identify Regina, a mammalian structural analog of Royalactin that also induces a naive-like state in mouse embryonic stem cells. This reveals an important innate program for stem cell self-renewal with broad implications in understanding the molecular regulation of stem cell fate across species.


Bioengineered Viral Platform for Intramuscular Passive Vaccine Delivery to Human Skeletal Muscle.

  • Nicole K Paulk‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2018‎

Skeletal muscle is ideal for passive vaccine administration as it is easily accessible by intramuscular injection. Recombinant adeno-associated virus (rAAV) vectors are in consideration for passive vaccination clinical trials for HIV and influenza. However, greater human skeletal muscle transduction is needed for therapeutic efficacy than is possible with existing serotypes. To bioengineer capsids with therapeutic levels of transduction, we utilized a directed evolution approach to screen libraries of shuffled AAV capsids in pools of surgically resected human skeletal muscle cells from five patients. Six rounds of evolution were performed in various muscle cell types, and evolved variants were validated against existing muscle-tropic serotypes rAAV1, 6, and 8. We found that evolved variants NP22 and NP66 had significantly increased primary human and rhesus skeletal muscle fiber transduction from surgical explants ex vivo and in various primary and immortalized myogenic lines in vitro. Importantly, we demonstrated reduced seroreactivity compared to existing serotypes against normal human serum from 50 adult donors. These capsids represent powerful tools for human skeletal muscle expression and secretion of antibodies from passive vaccines.


H3K4me3 breadth is linked to cell identity and transcriptional consistency.

  • Bérénice A Benayoun‎ et al.
  • Cell‎
  • 2014‎

Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.


Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion.

  • Kristen M Stearns-Reider‎ et al.
  • Aging cell‎
  • 2017‎

Age-related declines in skeletal muscle regeneration have been attributed to muscle stem cell (MuSC) dysfunction. Aged MuSCs display a fibrogenic conversion, leading to fibrosis and impaired recovery after injury. Although studies have demonstrated the influence of in vitro substrate characteristics on stem cell fate, whether and how aging of the extracellular matrix (ECM) affects stem cell behavior has not been investigated. Here, we investigated the direct effect of the aged muscle ECM on MuSC lineage specification. Quantification of ECM topology and muscle mechanical properties reveals decreased collagen tortuosity and muscle stiffening with increasing age. Age-related ECM alterations directly disrupt MuSC responses, and MuSCs seeded ex vivo onto decellularized ECM constructs derived from aged muscle display increased expression of fibrogenic markers and decreased myogenicity, compared to MuSCs seeded onto young ECM. This fibrogenic conversion is recapitulated in vitro when MuSCs are seeded directly onto matrices elaborated by aged fibroblasts. When compared to young fibroblasts, fibroblasts isolated from aged muscle display increased nuclear levels of the mechanosensors, Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), consistent with exposure to a stiff microenvironment in vivo. Accordingly, preconditioning of young fibroblasts by seeding them onto a substrate engineered to mimic the stiffness of aged muscle increases YAP/TAZ nuclear translocation and promotes secretion of a matrix that favors MuSC fibrogenesis. The findings here suggest that an age-related increase in muscle stiffness drives YAP/TAZ-mediated pathogenic expression of matricellular proteins by fibroblasts, ultimately disrupting MuSC fate.


Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss.

  • Marco Quarta‎ et al.
  • Nature communications‎
  • 2017‎

Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML.


Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration.

  • Jose E Heredia‎ et al.
  • Cell‎
  • 2013‎

In vertebrates, activation of innate immunity is an early response to injury, implicating it in the regenerative process. However, the mechanisms by which innate signals might regulate stem cell functionality are unknown. Here, we demonstrate that type 2 innate immunity is required for regeneration of skeletal muscle after injury. Muscle damage results in rapid recruitment of eosinophils, which secrete IL-4 to activate the regenerative actions of muscle resident fibro/adipocyte progenitors (FAPs). In FAPs, IL-4/IL-13 signaling serves as a key switch to control their fate and functions. Activation of IL-4/IL-13 signaling promotes proliferation of FAPs to support myogenesis while inhibiting their differentiation into adipocytes. Surprisingly, type 2 cytokine signaling is also required in FAPs, but not in myeloid cells, for rapid clearance of necrotic debris, a process that is necessary for timely and complete regeneration of tissues.


The ageing systemic milieu negatively regulates neurogenesis and cognitive function.

  • Saul A Villeda‎ et al.
  • Nature‎
  • 2011‎

In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines--including CCL11 (also known as eotaxin)--the plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.


Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging.

  • Ling Liu‎ et al.
  • Cell reports‎
  • 2013‎

The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may lead to a functional decline in quiescent stem cells. These findings highlight the importance of chromatin mapping in understanding unique features of stem cell identity and stem cell aging.


Smad3 initiates oxidative stress and proteolysis that underlies diaphragm dysfunction during mechanical ventilation.

  • Huibin Tang‎ et al.
  • Scientific reports‎
  • 2017‎

Prolonged use of mechanical ventilation (MV) leads to atrophy and dysfunction of the major inspiratory muscle, the diaphragm, contributing to ventilator dependence. Numerous studies have shown that proteolysis and oxidative stress are among the major effectors of ventilator-induced diaphragm muscle dysfunction (VIDD), but the upstream initiator(s) of this process remain to be elucidated. We report here that periodic diaphragm contraction via phrenic nerve stimulation (PNS) substantially reduces MV-induced proteolytic activity and oxidative stress in the diaphragm. We show that MV rapidly induces phosphorylation of Smad3, and PNS nearly completely prevents this effect. In cultured cells, overexpressed Smad3 is sufficient to induce oxidative stress and protein degradation, whereas inhibition of Smad3 activity suppresses these events. In rats subjected to MV, inhibition of Smad3 activity by SIS3 suppresses oxidative stress and protein degradation in the diaphragm and prevents the reduction in contractility that is induced by MV. Smad3's effect appears to link to STAT3 activity, which we previously identified as a regulator of VIDD. Inhibition of Smad3 suppresses STAT3 signaling both in vitro and in vivo. Thus, MV-induced diaphragm inactivity initiates catabolic changes via rapid activation of Smad3 signaling. An early intervention with PNS and/or pharmaceutical inhibition of Smad3 may prevent clinical VIDD.


mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance.

  • Samantha Haller‎ et al.
  • Cell stem cell‎
  • 2017‎

The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.


Muscle Stem Cell Function Is Impaired in β2-Adrenoceptor Knockout Mice.

  • Tatiana E Koike‎ et al.
  • Stem cell reviews and reports‎
  • 2022‎

Knockout (ko) mice for the β2 adrenoceptor (Adrβ2) have impaired skeletal muscle regeneration, suggesting that this receptor is important for muscle stem cell (satellite cell) function. Here, we investigated the role of Adrβ2 in the function of satellite cells from β2ko mice in the context of muscle regeneration, through in vivo and in vitro experiments. Immunohistochemical analysis showed a significant reduction in the number of self-renewed Pax7+ satellite cells, proliferating Pax7+/MyoD+ myogenic precursor cells, and regenerating eMHC+ myofibers in regenerating muscle of β2ko mice at 30, 3, and 10 days post-injury, respectively. Quiescent satellite cells were isolated by fluorescence-activated cell sorting, and cell cycle entry was assessed by EdU incorporation. The results demonstrated a lower number of proliferating Pax7+/EdU+ satellite cells from β2ko mice. There was an increase in the gene expression of the cell cycle inhibitor Cdkn1a and Notch pathway components and the activation of Notch signaling in proliferating myoblasts from β2ko mice. There was a decrease in the number of myogenin-positive nuclei in myofibers maintained in differentiation media, and a lower fusion index in differentiating myoblasts from β2ko mice. Furthermore, the gene expression of Wnt/β-catenin signaling components, the expression of nuclear β-catenin and the activation of Wnt/β-catenin signaling decreased in differentiating myoblasts from β2ko mice. These results indicate that Adrβ2 plays a crucial role in satellite cell self-renewal, as well as in myoblast proliferation and differentiation by regulating Notch and Wnt/β-catenin signaling, respectively.


Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration.

  • Karina H Nakayama‎ et al.
  • Communications biology‎
  • 2019‎

Traumatic skeletal muscle injuries cause irreversible tissue damage and impaired revascularization. Engineered muscle is promising for enhancing tissue revascularization and regeneration in injured muscle. Here we fabricated engineered skeletal muscle composed of myotubes interspersed with vascular endothelial cells using spatially patterned scaffolds that induce aligned cellular organization, and then assessed their therapeutic benefit for treatment of murine volumetric muscle loss. Murine skeletal myoblasts co-cultured with endothelial cells in aligned nanofibrillar scaffolds form endothelialized and aligned muscle with longer myotubes, more synchronized contractility, and more abundant secretion of angiogenic cytokines, compared to endothelialized engineered muscle formed from randomly-oriented scaffolds. Treatment of traumatically injured muscle with endothelialized and aligned skeletal muscle promotes the formation of highly organized myofibers and microvasculature, along with greater vascular perfusion, compared to treatment of muscle derived from randomly-oriented scaffolds. This work demonstrates the potential of endothelialized and aligned engineered skeletal muscle to promote vascular regeneration following transplantation.


Multiomics reveals glutathione metabolism as a driver of bimodality during stem cell aging.

  • Daniel I Benjamin‎ et al.
  • Cell metabolism‎
  • 2023‎

With age, skeletal muscle stem cells (MuSCs) activate out of quiescence more slowly and with increased death, leading to defective muscle repair. To explore the molecular underpinnings of these defects, we combined multiomics, single-cell measurements, and functional testing of MuSCs from young and old mice. The multiomics approach allowed us to assess which changes are causal, which are compensatory, and which are simply correlative. We identified glutathione (GSH) metabolism as perturbed in old MuSCs, with both causal and compensatory components. Contrary to young MuSCs, old MuSCs exhibit a population dichotomy composed of GSHhigh cells (comparable with young MuSCs) and GSHlow cells with impaired functionality. Mechanistically, we show that antagonism between NRF2 and NF-κB maintains this bimodality. Experimental manipulation of GSH levels altered the functional dichotomy of aged MuSCs. These findings identify a novel mechanism of stem cell aging and highlight glutathione metabolism as an accessible target for reversing MuSC aging.


Death-seq identifies regulators of cell death and senolytic therapies.

  • Alex Colville‎ et al.
  • Cell metabolism‎
  • 2023‎

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Mesenchymal Stromal Cells Are Required for Regeneration and Homeostatic Maintenance of Skeletal Muscle.

  • Michael N Wosczyna‎ et al.
  • Cell reports‎
  • 2019‎

The necessity of mesenchymal stromal cells, called fibroadipogenic progenitors (FAPs), in skeletal muscle regeneration and maintenance remains unestablished. We report the generation of a PDGFRαCreER knockin mouse model that provides a specific means of labeling and targeting FAPs. Depletion of FAPs using Cre-dependent diphtheria toxin expression results in loss of expansion of muscle stem cells (MuSCs) and CD45+ hematopoietic cells after injury and impaired skeletal muscle regeneration. Furthermore, FAP-depleted mice under homeostatic conditions exhibit muscle atrophy and loss of MuSCs, revealing that FAPs are required for the maintenance of both skeletal muscle and the MuSC pool. We also report that local tamoxifen metabolite delivery to target CreER activity in a single muscle, removing potentially confounding systemic effects of ablating PDGFRα+ cells distantly, also causes muscle atrophy. These data establish a critical role of FAPs in skeletal muscle regeneration and maintenance.


FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal.

  • Suchitra D Gopinath‎ et al.
  • Stem cell reports‎
  • 2014‎

Skeletal muscle stem cells, or "satellite cells" (SCs), are required for the regeneration of damaged muscle tissue. Although SCs self-renew during regeneration, the mechanisms that govern SC re-entry into quiescence remain elusive. We show that FOXO3, a member of the forkhead family of transcription factors, is expressed in quiescent SCs (QSCs). Conditional deletion of Foxo3 in QSCs impairs self-renewal and increases the propensity of SCs to adopt a differentiated fate. Transcriptional analysis of SCs lacking FOXO3 revealed a downregulation of Notch signaling, a key regulator of SC quiescence. Conversely, overexpression of Notch intracellular domain (NICD) rescued the self-renewal deficit of FOXO3-deficient SCs. We show that FOXO3 regulates NOTCH1 and NOTCH3 receptor expression and that decreasing expression of NOTCH1 and NOTCH3 receptors phenocopies the effect of FOXO3 deficiency in SCs. We demonstrate that FOXO3, perhaps by activating Notch signaling, promotes the quiescent state during SC self-renewal in adult muscle regeneration.


Myf5 expression during fetal myogenesis defines the developmental progenitors of adult satellite cells.

  • Stefano Biressi‎ et al.
  • Developmental biology‎
  • 2013‎

Myf5 is a member of the muscle-specific determination genes and plays a critical role in skeletal muscle development. Whereas the expression of Myf5 during embryonic and fetal myogenesis has been extensively studied, its expression in progenitors that will ultimately give rise to adult satellite cells, the stem cells responsible for muscle repair, is still largely unexplored. To investigate this aspect, we have generated a mouse strain carrying a CreER coding sequence in the Myf5 locus. In this strain, Tamoxifen-inducible Cre activity parallels endogenous Myf5 expression. Combining Myf5(CreER) and Cre reporter alleles, we were able to evaluate the contribution of cells expressing Myf5 at distinct developmental stages to the pool of satellite cells in adult hindlimb muscles. Although it was possible to trace back the origin of some rare satellite cells to a subpopulation of Myf5(+ve) progenitors in the limb buds at the late embryonic stage (∼E12), a significant number of satellite cells arise from cells which expressed Myf5 for the first time at the fetal stage (∼E15). These studies provide direct evidence that adult satellite cells derive from progenitors that first express the myogenic determination gene Myf5 during fetal stages of myogenesis.


Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential.

  • Robert N Judson‎ et al.
  • Cell stem cell‎
  • 2018‎

The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.


Altered caveolin-3 expression disrupts PI(3) kinase signaling leading to death of cultured muscle cells.

  • Gayle M Smythe‎ et al.
  • Experimental cell research‎
  • 2006‎

Caveolae and their coat proteins, caveolins, co-ordinate multiple signaling pathways. Caveolin-3 is a muscle-specific caveolin isoform that is deficient in limb girdle muscular dystrophy type 1 C (LGMD1C). Paradoxically, overexpression of this protein also causes muscle degeneration in vivo. We hypothesize that altered membrane expression of caveolin-3 in muscle cells causes a degenerative phenotype by disrupting the co-ordination of signaling pathways that are critical to the maintenance of cell survival. Here, we show for the first time that, in normal muscle cells subjected to oxidative stress, the phosphatidylinositol (3) kinase (PI(3) kinase)-associated proteins PDK1 and Akt associate with caveolae where they bind to caveolin-3, and that normal activation of this pathway promotes cell survival. Either increased or decreased expression of caveolin-3 at the membrane caused an increased susceptibility to oxidative stress, and myotube survival was markedly improved by PI(3) kinase inhibition. This occurred concomitantly with altered phosphorylation of the pro-apoptotic proteins GSK3beta and Bad, despite normal levels of Akt activation. Taken together, our results demonstrate that altered caveolin-3 expression can change the outcome of PI(3) kinase activation from cell survival to cell death. These findings indicate that normal expression and localization of caveolin-3 are required to appropriately co-ordinate PI(3) kinase/Akt-mediated cell survival signaling, and suggest that this pathway may be an effective therapeutic target for the treatment of muscular dystrophies associated with caveolin-3 mutations.


RNA-binding proteins direct myogenic cell fate decisions.

  • Joshua R Wheeler‎ et al.
  • eLife‎
  • 2022‎

RNA-binding proteins (RBPs), essential for skeletal muscle regeneration, cause muscle degeneration and neuromuscular disease when mutated. Why mutations in these ubiquitously expressed RBPs orchestrate complex tissue regeneration and direct cell fate decisions in skeletal muscle remains poorly understood. Single-cell RNA-sequencing of regenerating Mus musculus skeletal muscle reveals that RBP expression, including the expression of many neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates with specific stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discovered that the neuromuscular disease-associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis that controls myogenic cell fate transitions during terminal differentiation in mice. The timing of RBP expression specifies cell fate transitions by providing post-transcriptional regulation of messenger RNAs that coordinate stem cell fate decisions during tissue regeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: