Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 67 papers

Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

  • Tuyen Duc Do‎ et al.
  • Scientific reports‎
  • 2016‎

Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.


Identification of quantitative trait loci associated with boiled seed hardness in soybean.

  • Kaori Hirata‎ et al.
  • Breeding science‎
  • 2014‎

Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, 'Natto-shoryu' and 'Hyoukei-kuro 3', which differ largely in boiled seed hardness, which in 'Natto-shoryu' is about twice that of 'Hyoukei-kuro 3'. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the 'Hyoukei-kuro 3' alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding.


Cell Infectivity in relation to bovine leukemia virus gp51 and p24 in bovine milk exosomes.

  • Tetsuya Yamada‎ et al.
  • PloS one‎
  • 2013‎

Exosomes are small membranous microvesicles (40-100 nm in diameter) and are extracellularly released from a wide variety of cells. Exosomes contain microRNA, mRNA, and cellular proteins, which are delivered into recipient cells via these exosomes, and play a role in intercellular communication. In bovine leukemia virus (BLV) infection of cattle, although it is thought to be a minor route of infection, BLV can be transmitted to calves via milk. Here, we investigated the association between exosomes and BLV in bovine milk. BLV structural proteins, gp51 (Env) and p24 (Gag), were detected in bovine milk exosomes from BLV-infected cattle by Western blot analysis. In cells inoculated with these milk exosomes, BLV DNA was not detected during three serial passages by nested PCR. Purification of exosomes from persistently BLV-infected cells was achieved by immuno-magnetic separation using an antibody against exosomes coupled to magnetic beads. Consistently, BLV gp51 and p24 proteins were detected in purified exosomes. Moreover, reverse transcriptase activity was observed in purified exosomes, meaning that exosomes also contain viral enzyme. However, BLV DNA was not detected in serially passaged cells after inoculation of purified exosomes, indicating that exosomes carrying BLV proteins appeared to be not infectious. These results suggest that BLV proteins are released with milk exosomes and could be transferred into recipient cells of calves via milk exosomes as an alternative route not requiring virus infection. Moreover it is also possible that bovine milk exosomes play a role in clearance of BLV proteins from infected cells.


Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity.

  • Takahiro Horiuchi‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Metformin is the first-line drug in the treatment of type 2 diabetes. In addition to its hypoglycemic effect, metformin has an anti-inflammatory function, but the precise mechanism promoting this activity remains unclear. High mobility group box 1 (HMGB1) is an alarmin that is released from necrotic cells and induces inflammatory responses by its cytokine-like activity and is, therefore, a target of anti-inflammatory therapies. Here we identified HMGB1 as a novel metformin-binding protein by affinity purification using a biotinylated metformin analogue. Metformin directly bound to the C-terminal acidic tail of HMGB1. Both in vitro and in vivo, metformin inhibited inflammatory responses induced by full-length HMGB1 but not by HMGB1 lacking the acidic tail. In an acetaminophen-induced acute liver injury model in which HMGB1 released from injured cells exacerbates the initial injury, metformin effectively reduced liver injury and had no additional inhibitory effects when the extracellular HMGB1 was blocked by anti-HMGB1-neutralizing antibody. In summary, we report for the first time that metformin suppresses inflammation by inhibiting the extracellular activity of HMGB1. Because HMGB1 plays a major role in inflammation, our results suggest possible new ways to manage HMGB1-induced inflammation.


Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds.

  • Maria S Dwiyanti‎ et al.
  • BMC plant biology‎
  • 2011‎

Improvement of α-tocopherol content is an important breeding aim to increase the nutritional value of crops. Several efforts have been conducted to improve the α-tocopherol content in soybean [Glycine max (L.) Merr.] through transgenic technology by overexpressing genes related to α-tocopherol biosynthesis or through changes to crop management practices. Varieties with high α-tocopherol content have been identified in soybean germplasms. The heritability of this trait has been characterized in a cross between high α-tocopherol variety Keszthelyi Aproszemu Sarga (KAS) and low α-tocopherol variety Ichihime. In this study, the genetic mechanism of the high α-tocopherol content trait of KAS was elucidated.


Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: potential involvement of the PLC-IP3-dependent pathway.

  • Toshinobu Suzuki‎ et al.
  • Diabetes‎
  • 2011‎

Interleukin-6 (IL-6) has a significant impact on glucose metabolism. However, the effects of IL-6 on insulin secretion from pancreatic β-cells are controversial. Therefore, we analyzed IL-6 effects on pancreatic β-cell functions both in vivo and in vitro.


Cognitive dysfunction associated with anti-glutamic acid decarboxylase autoimmunity: a case-control study.

  • Masahito Takagi‎ et al.
  • BMC neurology‎
  • 2013‎

Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme in the synthesis of γ-aminobutyric acid (GABA). Anti-GAD antibodies (GADA) are associated with the progression of stiff person syndrome and other neurological diseases, as well as the immune-mediated (type 1) diabetes. GABA is one of the most widely distributed neurotransmitters, but the non-motor symptoms of GADA-positive patients are not well understood. Diabetes is increasingly recognized as a risk factor for dementia; however, the relationship between diabetes and dementia is controversial.The objective of this study was to assess cognitive function in patients with GADA-positive diabetes using subjects with GADA-negative type 2 diabetes as controls.


Olfactory receptors are expressed in pancreatic β-cells and promote glucose-stimulated insulin secretion.

  • Yuichiro Munakata‎ et al.
  • Scientific reports‎
  • 2018‎

Olfactory receptors (ORs) mediate olfactory chemo-sensation in OR neurons. Herein, we have demonstrated that the OR chemo-sensing machinery functions in pancreatic β-cells and modulates insulin secretion. First, we found several OR isoforms, including OLFR15 and OLFR821, to be expressed in pancreatic islets and a β-cell line, MIN6. Immunostaining revealed OLFR15 and OLFR821 to be uniformly expressed in pancreatic β-cells. In addition, mRNAs of Olfr15 and Olfr821 were detected in single MIN6 cells. These results indicate that multiple ORs are simultaneously expressed in individual β-cells. Octanoic acid, which is a medium-chain fatty acid contained in food and reportedly interacts with OLFR15, potentiated glucose-stimulated insulin secretion (GSIS), thereby improving glucose tolerance in vivo. GSIS potentiation by octanoic acid was confirmed in isolated pancreatic islets and MIN6 cells and was blocked by OLFR15 knockdown. While Gα olf expression was not detectable in β-cells, experiments using inhibitors and siRNA revealed that the pathway dependent on phospholipase C-inositol triphosphate, rather than cAMP-protein kinase A, mediates GSIS potentiation via OLFR15. These findings suggest that the OR system in pancreatic β-cells has a chemo-sensor function allowing recognition of environmental substances obtained from food, and potentiates insulin secretion in a cell-autonomous manner, thereby modulating systemic glucose metabolism.


Neuronal signals regulate obesity induced β-cell proliferation by FoxM1 dependent mechanism.

  • Junpei Yamamoto‎ et al.
  • Nature communications‎
  • 2017‎

Under insulin-resistant conditions such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. A liver-brain-pancreas neuronal relay plays an important role in this process. Here, we show the molecular mechanism underlying this compensatory β-cell proliferation. We identify FoxM1 activation in islets from neuronal relay-stimulated mice. Blockade of this relay, including vagotomy, inhibits obesity-induced activation of the β-cell FoxM1 pathway and suppresses β-cell expansion. Inducible β-cell-specific FoxM1 deficiency also blocks compensatory β-cell proliferation. In isolated islets, carbachol and PACAP/VIP synergistically promote β-cell proliferation through a FoxM1-dependent mechanism. These findings indicate that vagal nerves that release several neurotransmitters may allow simultaneous activation of multiple pathways in β-cells selectively, thereby efficiently promoting β-cell proliferation and maintaining glucose homeostasis during obesity development. This neuronal signal-mediated mechanism holds potential for developing novel approaches to regenerating pancreatic β-cells.


Deep sequencing of the prothoracic gland transcriptome reveals new players in insect ecdysteroidogenesis.

  • Takayoshi Nakaoka‎ et al.
  • PloS one‎
  • 2017‎

Ecdysteroids are steroid hormones that induce molting and determine developmental timing in arthropods. In insect larva, the prothoracic gland (PG) is a major organ for ecdysone synthesis and release. Released ecdysone is converted into the active form, 20-hydroxyecdysone (20E) in the peripheral tissues. All processes from ecdysone synthesis and release from the PG to its conversion to 20E are called ecdysteroidogenesis and are under the regulation of numerous factors expressed in the PG and peripheral tissues. Classical genetic approaches and recent transcriptomic screening in the PG identified several genes responsible for ecdysone synthesis and release, whereas the regulatory mechanism remains largely unknown. We analyzed RNA-seq data of the silkworm Bombyx mori PG and employed the fruit fly Drosophila melanogaster GAL4/UAS binary RNAi system to comprehensively screen for genes involved in ecdysone synthesis and/or release. We found that the genes encoding δ-aminolevulinic acid synthase (CG3017/alas) and putative NAD kinase (CG33156) were highly expressed in the PG of both B. mori and D. melanogaster. Neither alas nor CG33156 RNAi-induced larvae could enter into the pupal stage, and they had a lower abundance of the active form ecdysteroids in their prolonged larval stage. These results demonstrated that alas and CG33156 are indispensable for ecdysteroidogenesis.


Accumulation of protein aggregates induces autolytic programmed cell death in hybrid tobacco cells expressing hybrid lethality.

  • Naoya Ueno‎ et al.
  • Scientific reports‎
  • 2019‎

Hybrid cells of Nicotiana suaveolens x N. tabacum grow normally at 36 °C, but immediately express lethality due to probable autoimmune response when transferred from 36 to 28 °C. Our recent study showed that the temperature-sensitive lethality of these hybrid cells occurs through autolytic programmed cell death (PCD). However, what happens in hybrid cells following the induction of autoimmune response to autolytic PCD is unclear. We hypothesized that accumulation of protein aggregates in hybrid cells induces autolytic PCD and examined detergent-insoluble protein (protein aggregates) isolated from hybrid cells expressing lethality. The amount of insoluble proteins increased in hybrid cells. Sodium 4-phenylbutyrate, a chemical chaperone, inhibited both the accumulation of insoluble proteins and irreversible progression of cell death. In contrast, E-64, a cysteine protease inhibitor, accelerated both the accumulation of insoluble proteins and cell death. Moreover, proteome analysis revealed that proteasome-component proteins were accumulated specifically in cells treated with E-64, and proteasome activity of hybrid cells decreased after induction of lethality. These findings demonstrate that accumulation of protein aggregates, including proteasome subunits, eventually cause autolytic PCD in hybrid cells. This suggests a novel process inducing plant PCD by loss of protein homeostasis and provides clues to future approaches for elucidating the whole process.


Characterization and quantitative trait locus mapping of late-flowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background.

  • Fei Sun‎ et al.
  • PloS one‎
  • 2019‎

The timing of both flowering and maturation determine crop adaptability and productivity. Soybean (Glycine max) is cultivated across a wide range of latitudes. The molecular-genetic mechanisms for flowering in soybean have been determined for photoperiodic responses to long days (LDs), but remain only partially determined for the delay of flowering under short-day conditions, an adaptive trait of cultivars grown in lower latitudes. Here, we characterized the late-flowering (LF) habit introduced from the Thai cultivar K3 into a photoperiod-insensitive genetic background under different photo-thermal conditions, and we analyzed the genetic basis using quantitative trait locus (QTL) mapping. The LF habit resulted from a basic difference in the floral induction activity and from the suppression of flowering, which was caused by red light-enriched LD lengths and higher temperatures, during which FLOWERING LOCUS T (FT) orthologs, FT2a and FT5a, were strongly down-regulated. QTL mapping using gene-specific markers for flowering genes E2, FT2a and FT5a and 829 single nucleotide polymorphisms obtained from restriction-site associated DNA sequencing detected three QTLs controlling the LF habit. Of these, a QTL harboring FT2a exhibited large and stable effects under all the conditions tested. A resequencing analysis detected a nonsynonymous substitution in exon 4 of FT2a from K3, which converted the glycine conserved in FT-like proteins to the aspartic acid conserved in TERMINAL FLOWER 1-like proteins (floral repressors), suggesting a functional depression in the FT2a protein from K3. The effects of the remaining two QTLs, likely corresponding to E2 and FT5a, were environment dependent. Thus, the LF habit from K3 may be caused by the functional depression of FT2a and the down-regulation of two FT genes by red light-enriched LD conditions and high temperatures.


Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil.

  • Masatake Kanai‎ et al.
  • Scientific reports‎
  • 2019‎

Seeds of soybean (Glycine max L.) are a major source of plant-derived oils. In the past, improvements have been made in the quantity and quality of seed oil. Triacylglycerols (TAGs) are the principal components of soybean seed oil, and understanding the metabolic regulation of TAGs in soybean seeds is essential. Here, we identified four soybean genes encoding TAG lipases, designated as SUGAR DEPENDENT1-1 (GmSDP1-1), GmSDP1-2, GmSDP1-3 and GmSDP1-4; these are homologous to Arabidopsis thaliana SDP1 (AtSDP1). To characterize the function of these genes during grain filling, transgenic lines of soybean were generated via RNA interference to knockdown the expression of all four GmSDP1 genes. The seed oil content of the transgenic soybean lines was significantly increased compared with the wild type (WT). Additionally, fatty acid profiles of the WT and transgenic soybean lines were altered; the content of linoleic acid, a major fatty acid in soybean seeds, was significantly reduced, whereas that of oleic acid was increased in transgenic soybean seeds compared with the WT. Substrate specificity experiments showed that TAG lipase preferentially cleaved oleic acid than linoleic acid in the oil body membrane in WT soybean. This study demonstrates that the GmSDP1 proteins regulate both the TAG content and fatty acid composition of soybean seeds during grain filling. These results provide a novel strategy for improving both the quantity and quality of soybean seed oil.


Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map.

  • Cheolwoo Park‎ et al.
  • BMC plant biology‎
  • 2019‎

Soybean is one of the most important crop sources of tocopherols (Toc). However, the content of α-Toc, an isoform with the highest vitamin E activity in humans, is low in most cultivars. With the aim of broadening genetic variability, we performed quantitative trait locus (QTL) analysis for a high seed α-Toc trait detected in a wild soybean and characterized the sequence polymorphisms and expression profiles of γ-tocopherol methyltransferase (γ-TMT) genes as potential candidates.


Isolation and characterization of induced mutants in the gene associated with seed cadmium accumulation in soybean.

  • Kaori Hirata‎ et al.
  • Breeding science‎
  • 2019‎

Food contamination by cadmium (Cd) is a serious threat to human health. Thus, it is imperative to prevent Cd accumulation in staple crops like soybean. The development of low Cd accumulating cultivars is an effective solution. To this end, it is essential to identify the gene(s) controlling seed Cd accumulation. Although Glyma.09G055600 (GmHMA3) seems to be associated with Cd accumulation in soybean, it has not been established if it is responsible for seed Cd accumulation. In the present study, the effect of GmHMA3 on seed Cd accumulation in soybean was validated using three independent GmHMA3 mutants isolated from an ethyl methanesulfonate-induced soybean mutant library. Each of mutant had an amino acid substitution in GmHMA3 and segregating progenies were developed by crossing the original cultivar with each of the three mutants. The relationship between these three mutations and seed Cd accumulation was investigated. While two of them significantly increased seed Cd accumulation corresponding to previous reports of a natural missense mutation in GmHMA3, the other slightly decreased seed Cd accumulation. Overall, these results indicate that GmHMA3 is responsible for seed Cd accumulation in soybean.


Ascorbic acid during the suckling period is required for proper DNA demethylation in the liver.

  • Kenichi Kawahori‎ et al.
  • Scientific reports‎
  • 2020‎

Ascorbic acid (AA, vitamin C) serves as a cofactor for ten-eleven translocation (TET) enzymes and induces DNA demethylation in vitro. However, its role in DNA demethylation in vivo remains unclear. We previously reported that DNA demethylation in the mouse liver was enhanced during the suckling period. Therefore, we hypothesized that DNA demethylation is enhanced in an AA-dependent manner during the suckling period. To examine our hypothesis, we employed wild-type (WT) mice, which synthesize AA, and senescence marker protein-30/gluconolactonase (SMP30/GNL) knockout (KO) mice, which cannot synthesize AA, and analyzed the DNA methylation status in the livers of offspring in both the suckling period and adulthood. SMP30/GNL KO offspring showed DNA hypermethylation in the liver possibly due to low plasma and hepatic AA levels during the suckling period despite the administration of rescue-dose AA to dams. Furthermore, DNA hypermethylation of the fibroblast growth factor 21 gene (Fgf21), a PPARα target gene, persisted into adulthood. In contrast, a high-dose AA administration to SMP30/GNL KO dams during the lactation period restored DNA demethylation in the livers of offspring. Even though a slight increase was observed in plasma AA levels with the administration of rescue-dose AA to WT dams during the gestation and lactation periods, DNA demethylation in the livers of offspring was minimally enhanced. The present results demonstrate that AA intake during the suckling period is required for proper DNA demethylation in the liver.


Improving Quantitative Traits in Self-Pollinated Crops Using Simulation-Based Selection With Minimal Crossing.

  • Daisuke Sekine‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Genomic selection and marker-assisted recurrent selection have been applied to improve quantitative traits in many cross-pollinated crops. However, such selection is not feasible in self-pollinated crops owing to laborious crossing procedures. In this study, we developed a simulation-based selection strategy that makes use of a trait prediction model based on genomic information to predict the phenotype of the progeny for all possible crossing combinations. These predictions are then used to select the best cross combinations for the selection of the given trait. In our simulated experiment, using a biparental initial population with a heritability set to 0.3, 0.6, or 1.0 and the number of quantitative trait loci set to 30 or 100, the genetic gain of the proposed strategy was higher or equal to that of conventional recurrent selection method in the early selection cycles, although the number of cross combinations of the proposed strategy was considerably reduced in each cycle. Moreover, this strategy was demonstrated to increase or decrease seed protein content in soybean recombinant inbred lines using SNP markers. Information on 29 genomic regions associated with seed protein content was used to construct the prediction model and conduct simulation. After two selection cycles, the selected progeny had significantly higher or lower seed protein contents than those from the initial population. These results suggest that our strategy is effective in obtaining superior progeny over a short period with minimal crossing and has the potential to efficiently improve the target quantitative traits in self-pollinated crops.


Characterisation of Ppy-lineage cells clarifies the functional heterogeneity of pancreatic beta cells in mice.

  • Takahiro Fukaishi‎ et al.
  • Diabetologia‎
  • 2021‎

Pancreatic polypeptide (PP) cells, which secrete PP (encoded by the Ppy gene), are a minor population of pancreatic endocrine cells. Although it has been reported that the loss of beta cell identity might be associated with beta-to-PP cell-fate conversion, at present, little is known regarding the characteristics of Ppy-lineage cells.


HYBID derived from tumor cells and tumor-associated macrophages contribute to the glioblastoma growth.

  • Shohei Tsuji‎ et al.
  • Brain research‎
  • 2021‎

Glioblastoma is the most malignant tumor of the brain associated with poor prognosis and outcome, and hence there is an urgent need to develop novel treatments for glioblastoma. In this study, we focused on hyaluronan binding protein (HYBID, as known as CEMIP/KIAA1199), a protein involved in hyaluronan depolymerization in chondrocytes and synoviocytes. We previously reported that Hybid-deficient (KO) mice show accumulation of hyaluronan in the brain, and memory impairment. To elucidate the role of HYBID in glioblastoma pathogenesis, we knocked down HYBID in human glioblastoma cells using siRNAs and developed a murine orthotopic xenograft model in the Hybid KO mice. Downregulation of HYBID in glioblastoma cells resulted in inhibition of cell proliferation and migration, and increased cell death. The growth of glioblastoma cells implanted in the mouse brain was suppressed in Hybid KO mice compared to that in the wild-type mice. Interestingly, infiltration of macrophages in the glioblastoma tissue was decreased in Hybid KO mice. Using intraperitoneal macrophages derived from Hybid KO mice and glioma cell supernatants, we examined the role of HYBID in macrophages in the tumor environment. We showed that HYBID contributes to macrophage migration and the release of pro-tumor factors. Moreover, we revealed that HYBID can be a poor prognostic factor in glioma patients by bioinformatics approaches. Our study provides data to support that HYBID expressed by both glioblastoma cells and tumor-associated macrophages may contribute to glioblastoma progression and suggests that HYBID may be a potential target for therapy that focuses on the tumor microenvironment of glioblastoma.


Temozolomide has anti-tumor effects through the phosphorylation of cPLA2 on glioblastoma cells.

  • Shohei Tsuji‎ et al.
  • Brain research‎
  • 2019‎

Temozolomide is an alkylating agent used as the first line of treatment for glioblastoma. However, chemoresistance to temozolomide is common in glioma patients. In addition, there are likely many unknown mechanisms for the anti-tumor effects of temozolomide. It is known that an alkylating agent, sulfur mustard, activates cytosolic phospholipase A2 (cPLA₂) releasing arachidonic acid to suppress tumors. The present study was performed to elucidate the involvement of cPLA2 in the anti-tumor mechanisms of temozolomide. In three glioblastoma cell lines (GL261, U251MG and T98G), we performed several evaluations including cell viability, cell migration and apoptosis, to study temozolomide-induced anti-tumor effects. Further, we evaluated tumor size in the murine orthotropic glioblastoma model after oral administration of temozolomide. Finally, we investigated the phosphorylation of cPLA2 in GL261 cells treated with temozolomide, and clarified whether phosphorylation of cPLA2 affects cell growth. Temozolomide suppressed cell growth and cell migration in glioblastoma cells in vitro and showed anti-tumor effect in the murine orthotopic glioblastoma model in vivo. Furthermore, temozolomide increased phosphorylation of cPLA2, which was associated with suppression of cell growth. However, in MGMT high-expressing glioblastoma T98G cells, temozolomide could not suppress cell growth or cause phosphorylation of cPLA2. These findings indicate that temozolomide suppressed cell growth partly by phosphorylation of cPLA2 in glioblastoma cells. In addition, because temozolomide did not cause phosphorylation of cPLA2 in MGMT high-expressing glioblastoma T98G cells, phosphorylation of cPLA2 may be caused by DNA alkylation of temozolomide.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: