Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

The role of intra-articular neuronal CCR2 receptors in knee joint pain associated with experimental osteoarthritis in mice.

  • Shingo Ishihara‎ et al.
  • Arthritis research & therapy‎
  • 2021‎

C-C chemokine receptor 2 (CCR2) signaling plays a key role in pain associated with experimental murine osteoarthritis (OA) after destabilization of the medial meniscus (DMM). Here, we aimed to assess if CCR2 expressed by intra-articular sensory neurons contributes to knee hyperalgesia in the early stages of the model.


Recommendations For a Standardized Approach to Histopathologic Evaluation of Synovial Membrane in Murine Models of Experimental Osteoarthritis.

  • Alia M Obeidat‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA.


Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis.

  • Alia M Obeidat‎ et al.
  • Nature communications‎
  • 2023‎

Non-opioid targets are needed for addressing osteoarthritis pain, which is mechanical in nature and associated with daily activities such as walking and climbing stairs. Piezo2 has been implicated in the development of mechanical pain, but the mechanisms by which this occurs remain poorly understood, including the role of nociceptors. Here we show that nociceptor-specific Piezo2 conditional knock-out mice were protected from mechanical sensitization associated with inflammatory joint pain in female mice, joint pain associated with osteoarthritis in male mice, as well as both knee swelling and joint pain associated with repeated intra-articular injection of nerve growth factor in male mice. Single cell RNA sequencing of mouse lumbar dorsal root ganglia and in situ hybridization of mouse and human lumbar dorsal root ganglia revealed that a subset of nociceptors co-express Piezo2 and Ntrk1 (the gene that encodes the nerve growth factor receptor TrkA). These results suggest that nerve growth factor-mediated sensitization of joint nociceptors, which is critical for osteoarthritic pain, is also dependent on Piezo2, and targeting Piezo2 may represent a therapeutic option for osteoarthritis pain control.


Notch signaling is activated in knee-innervating dorsal root ganglia in experimental models of osteoarthritis joint pain.

  • Lai Wang‎ et al.
  • Arthritis research & therapy‎
  • 2023‎

We aimed to explore activation of the Notch signaling pathway in knee-innervating lumbar dorsal root ganglia (DRG) in the course of experimental osteoarthritis (OA) in mice, and its role in knee hyperalgesia.


Effect of ball collision direction on a wet mechanochemical reaction.

  • Takahiro Kozawa‎ et al.
  • Scientific reports‎
  • 2021‎

Mechanochemical reactions can be induced in a solution by the collision of balls to produce high-temperature and high-pressure zones, with the reactions occurring through a dissolution-precipitation mechanism due to a change in solubility. However, only a fraction of the impact energy contributes to the mechanochemical reactions, while the rest is mainly consumed by the wear of balls and the heat generation. To clarify whether the normal or tangential component of collisions makes a larger contribution on the reaction, herein we studied the effect of collision direction on a wet mechanochemical reaction through combined analysis of the experimental reaction rates and simulated ball motion. Collisions of balls in the normal direction were found to contribute strongly to the wet mechanochemical reaction. These results could be used to improve the synthesis efficiency, predict the reaction, and lower the wear in the wet mechanochemical reactions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: