Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Genome-Wide Characterization of Effector Protein-Encoding Genes in Sclerospora graminicola and Its Validation in Response to Pearl Millet Downy Mildew Disease Stress.

  • Shiva Hadimani‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the essential food crop for over ninety million people living in drier parts of India and South Africa. Pearl millet crop production is harshly hindered by numerous biotic stresses. Sclerospora graminicola causes downy mildew disease in pearl millet. Effectors are the proteins secreted by several fungi and bacteria that manipulate the host cell structure and function. This current study aims to identify genes encoding effector proteins from the S. graminicola genome and validate them through molecular techniques. In silico analyses were employed for candidate effector prediction. A total of 845 secretory transmembrane proteins were predicted, out of which 35 proteins carrying LxLFLAK (Leucine-any amino acid-Phenylalanine-Leucine-Alanine-Lysine) motif were crinkler, 52 RxLR (Arginine, any amino acid, Leucine, Arginine), and 17 RxLR-dEER putative effector proteins. Gene validation analysis of 17 RxLR-dEER effector protein-producing genes was carried out, of which 5genes were amplified on the gel. These novel gene sequences were submitted to NCBI. This study is the first report on the identification and characterization of effector genes in Sclerospora graminicola. This dataset will aid in the integration of effector classes that act independently, paving the way to investigate how pearl millet responds to effector protein interactions. These results will assist in identifying functional effector proteins involving the omic approach using newer bioinformatics tools to protect pearl millet plants against downy mildew stress. Considered together, the identified effector protein-encoding functional genes can be utilized in screening oomycetes downy mildew diseases in other crops across the globe.


RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines.

  • Mostafa Abdelrahman‎ et al.
  • PloS one‎
  • 2017‎

The genus Allium is a rich source of steroidal saponins, and its medicinal properties have been attributed to these bioactive compounds. The saponin compounds with diverse structures play a pivotal role in Allium's defense mechanism. Despite numerous studies on the occurrence and chemical structure of steroidal saponins, their biosynthetic pathway in Allium species is poorly understood. The monosomic addition lines (MALs) of the Japanese bunching onion (A. fistulosum, FF) with an extra chromosome from the shallot (A. cepa Aggregatum group, AA) are powerful genetic resources that enable us to understand many physiological traits of Allium. In the present study, we were able to isolate and identify Alliospiroside A saponin compound in A. fistulosum with extra chromosome 2A from shallot (FF2A) and its role in the defense mechanism against Fusarium pathogens. Furthermore, to gain molecular insight into the Allium saponin biosynthesis pathway, high-throughput RNA-Seq of the root, bulb, and leaf of AA, MALs, and FF was carried out using Illumina's HiSeq 2500 platform. An open access Allium Transcript Database (Allium TDB, http://alliumtdb.kazusa.or.jp) was generated based on RNA-Seq data. The resulting assembled transcripts were functionally annotated, revealing 50 unigenes involved in saponin biosynthesis. Differential gene expression (DGE) analyses of AA and MALs as compared with FF (as a control) revealed a strong up-regulation of the saponin downstream pathway, including cytochrome P450, glycosyltransferase, and beta-glucosidase in chromosome 2A. An understanding of the saponin compounds and biosynthesis-related genes would facilitate the development of plants with unique saponin content and, subsequently, improved disease resistance.


Genome-Wide Identification, Diversification, and Expression Analysis of Lectin Receptor-Like Kinase (LecRLK) Gene Family in Cucumber under Biotic Stress.

  • Muhammad Salman Haider‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF-Trichoderma harzianum Rifai), powdery mildew pathogen (PPM-Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.


Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties.

  • Savitha DeBritto‎ et al.
  • Scientific reports‎
  • 2020‎

Pyocyanin is a blue green phenazine pigment produced in large quantities by active cultures of Pseudomonas aeruginosa, with advantageous applications in medicine, agriculture and for the environment. Hence, in the present study, a potent bacterium was isolated from agricultural soil and was identified morphologically and by 16S rRNA sequencing as P. aeruginosa (isolate KU_BIO2). When the influence of nutrient supplements in both King's A and Nutrient media as amended was investigated, an enhanced pyocyanin production of 2.56 µg ml-1 was achieved in King's A medium amended with soya bean followed by 1.702 µg ml-1 of pyocyanin from the nutrient medium amended with sweet potato. Purified pyocyanin was characterized by UV-Vis Spectrophotometer and Fourier-Transform Infrared spectroscopy (FTIR). Furthermore, Liquid Chromatography Mass Spectrum (LCMS) and Nuclear Magnetic Resonance (NMR) confirmed its mass value at 211 and as N-CH3 protons resonating at 3.363 ppm as a singlet respectively. The isolated pyocyanin displayed remarkable dye property by inducing color change in cotton cloth from white to pink. Lastly, the antifungal activity of test pyocyanin showed inhibition of growth of rice blast fungus, Magnaporthe grisea and bacterial blight of rice, Xanthomonas oryzae at concentrations of 150 and 200 ppm, respectively. Thus, this investigation provides evidence for diverse actions of pyocyanin which are nutrient dependent and are capable of acting on a large scale, by utilizing microbes existing in agriculture wastes, and thus could be used as an alternative source in the making of natural textile dyes with strong durability and a broad spectrum of ecofriendly agrochemicals.


FoMC69 Gene in Fusarium oxysporum f. sp. radicis-lycopersici Is Essential for Pathogenicity by Involving Normal Function of Chlamydospores.

  • Kazunori Sasaki‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

Fusarium oxysporum f. sp. radicis-lycopersici (Forl) causes crown and root rot disease in tomato, effecting severe economic losses. However, research on the pathogenicity genes and infection strategy of Forl is limited compared to that on F. oxysporum f. sp. lycopersici (Fol). In this study, we characterized FoMC69 gene in Forl as a homolog of MC69 required for pathogenicity in rice blast pathogen-Magnaporthe oryzae. Gene expression analysis revealed that FoMC69 expressionin Forl is higher than that in Folin planta. FoMC69-knockout mutant of Forl had significantly reduced root rot symptoms compared to the wild-type strain, and full pathogenicity was restored by complementation. By contrast, ΔFoMC69 mutant of Fol presented the same symptoms as the wild type, suggesting that FoMC69 of Forl, but not of Fol, was essential for full virulence in tomato plants. Morphological differences between the Forl and ΔFoMC69 in the roots were observed by fluorescent labeling using WGA-FITC. Chlamydospores of the ΔFoMC69 mutant of Forlcontinuously increased during infection and were three times higher than that of the wild type at 21 days post-inoculation. These observations suggest that FoMC69 of Forl is required for virulence to tomato plants by involving the normal development and germination of chlamydospores.


Synchronised regulation of disease resistance in primed finger millet plants against the blast disease.

  • Savita Veeranagouda Patil‎ et al.
  • Biotechnology reports (Amsterdam, Netherlands)‎
  • 2020‎

Plants, being sessile, are exposed to an array of abiotic and biotic stresses. To adapt towards the changing environments, plants have evolved mechanisms that help in perceiving stress signals wherein phytohormones play a critical role. They have the ability to network enabling them to mediate defense responses. These endogenous signals, functioning at low doses are a part of all the developmental stages of the plant. Phytohormones possess specific functions as they interact with each other positively or negatively through cross-talks. In the present study, variations in the amount of phytohormones produced during biotic stress caused due to Magnoporthe grisea infection was studied through targeted metabolomics in both primed and control finger millet plants. Histochemical studies revealed callose deposition at the site of pathogen entry in the primed plants indicating its role during plant defense. The knowledge on the genetic makeup during infection was obtained by quantification of MAP kinase kinases 1 and 2 (MKK1/2) and lipoxygenase (LOX) genes, wherein the expression levels were high in the primed plants at 6 hours post-inoculation (hpi) compared to mock-control. Studies indicate the pivotal role of mitogen-activated protein kinase (MAPK or MAP kinases) during defense signalling. It is the first report to be studied on MAPK role in finger millet-blast disease response. Temporal accumulation of LOX enzyme along with its activity was also investigated due to its significant role during jasmonate synthesis in the plant cells. Results indicated its highest activity at 12 hpi. This is the first report on the variation in phytohormone levels in fingermillet - M. grisea pathosystem upon priming which were substantiated through salicylic acid (SA) pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: