Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders.

  • José Roberto Aparecido dos Santos-Pinto‎ et al.
  • Journal of proteomics‎
  • 2014‎

Spidroin-1 is one of the major ampullate silk proteins produced by spiders for use in the construction of the frame and radii of orb webs, and as a dragline to escape from predators. Only partial sequences of spidroin-1 produced by Nephila clavipes have been reported up to now, and there is no information on post-translational modifications (PTMs). A gel-based mass spectrometry strategy with ETD and CID fragmentation methods were used to sequence and determine the presence/location of any PTMs on the spidroin-1. Sequence coverage of 98.06%, 95.05%, and 98.37% were obtained for N. clavipes, Nephila edulis and for Nephila madagascariensis, respectively. Phosphorylation was the major PTM observed with 8 phosphorylation sites considered reliable on spidroin-1 produced by N. clavipes, 4 in N. madagascariensis and 2 for N. edulis. Dityrosine and 3,4-dihydroxyphenylalanine (formed by oxidation of the spidroin-1) were observed, although the mechanism by which they are formed (i.e. exposure to UV radiation or to peroxidases in the major ampullate silk gland) is uncertain. Herein we present structural information on the spidroin-1 produced by three different Nephila species; these findings may be valuable for understanding the physicochemical properties of the silk proteins and moreover, future designs of recombinantly produced spider silk proteins. Biotechnological significance The present investigation shows for the first time spidroin structure and post-translational modifications observed on the major ampullate silk spidroin-1. The many site specific phosphorylations (localized within the structural motifs) along with the probably photoinduction of hydroxylations may be relevant for scientists in material science, biology, biochemistry and environmental scientists. Up to now all the mechanical properties of the spidroin have been characterized without any consideration about the existence of PTMs in the sequence of spidroins. Thus, these findings for major ampullate silk spidroin-1 from Nephila spiders provide the basis for mechanical-elastic property studies of silk for biotechnological and biomedical potential applications. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Hippocampal levels and activity of the sodium/potassium transporting ATPase subunit α-3 (AT1A3) are paralleling memory training in the multiple T-maze in the C57BL/6J mouse.

  • Seok Heo‎ et al.
  • Neurochemistry international‎
  • 2012‎

Although the sodium/potassium transporting ATPase subunit alpha-3 (AT1A3) has been linked to memory mechanisms in rodents, regulation of this ATPase in terms of activity and complex levels by memory performance in a land maze has not been shown so far. It was therefore the aim of the study to link memory retrieval in the multiple T-Maze (MTM) to AT1A3 protein levels and activity. C57BL/6J mice were trained in the MTM and euthanized 6h following memory retrieval. Hippocampal membrane proteins were prepared by ultracentrifugation and run on blue native gel electrophoresis (BN-PAGE). Enzyme activity was evaluated using an in-gel method. AT1A3 protein was characterized using mass spectrometry (nano-LC-ESI-MS/MS). On BN-PAGE a single band was observed at 240 kDa, which corresponds to the dimeric form of the enzyme. Higher levels of AT1A3 complex were seen in trained mice. Also ATPase activity was higher in trained mice, and was observed both at 110 and at 240 kDa. Mass spectrometry unambiguously identified AT1A3 with 98.91% sequence coverage. A series of novel AT1A3 phosphorylation sites were detected. Taken together, it was shown that increased AT1A3 protein levels for the dimer as well as AT1A3 activity represented by the monomer and the dimer were paralleling memory training in the MTM. This may be relevant for understanding the role of the catalytic hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane that generates the electrochemical gradient of sodium and potassium ions. Herein, we provide evidence for a possible role of AT1A3 in memory mechanisms and support previous findings using different animal models for memory formation.


Phosphorylation regulates the sensitivity of voltage-gated Kv7.2 channels towards phosphatidylinositol-4,5-bisphosphate.

  • Isabella Salzer‎ et al.
  • The Journal of physiology‎
  • 2017‎

Phosphatidylinositol-4,5-bisphosphate (PIP2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2 . Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2 , thereby ensuring the tight regulation of the channel via G protein-coupled receptors.


Experience-Induced Remodeling of the Hippocampal Post-synaptic Proteome and Phosphoproteome.

  • Seok Heo‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2023‎

The postsynaptic density (PSD) of excitatory synapses contains a highly organized protein network with thousands of proteins and is a key node in the regulation of synaptic plasticity. To gain new mechanistic insight into experience-induced changes in the PSD, we examined the global dynamics of the hippocampal PSD proteome and phosphoproteome in mice following four different types of experience. Mice were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated from individual mice to investigate molecular mechanisms underlying experience-dependent remodeling of synapses. We developed a new strategy to identify and quantify the relatively low level of site-specific phosphorylation of PSD proteome from the hippocampus, by using a modified iTRAQ-based TiSH protocol. In the PSD, we identified 3938 proteins and 2761 phosphoproteins in the sequential strategy covering a total of 4968 unique protein groups (at least two peptides including a unique peptide). On the phosphoproteins, we identified a total of 6188 unambiguous phosphosites (75%


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: