Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA.

  • Gaspare La Rocca‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

MicroRNAs repress mRNA translation by guiding Argonaute proteins to partially complementary binding sites, primarily within the 3' untranslated region (UTR) of target mRNAs. In cell lines, Argonaute-bound microRNAs exist mainly in high molecular weight RNA-induced silencing complexes (HMW-RISC) associated with target mRNA. Here we demonstrate that most adult tissues contain reservoirs of microRNAs in low molecular weight RISC (LMW-RISC) not bound to mRNA, suggesting that these microRNAs are not actively engaged in target repression. Consistent with this observation, the majority of individual microRNAs in primary T cells were enriched in LMW-RISC. During T-cell activation, signal transduction through the phosphoinositide-3 kinase-RAC-alpha serine/threonine-protein kinase-mechanistic target of rapamycin pathway increased the assembly of microRNAs into HMW-RISC, enhanced expression of the glycine-tryptophan protein of 182 kDa, an essential component of HMW-RISC, and improved the ability of microRNAs to repress partially complementary reporters, even when expression of targeting microRNAs did not increase. Overall, data presented here demonstrate that microRNA-mediated target repression in nontransformed cells depends not only on abundance of specific microRNAs, but also on regulation of RISC assembly by intracellular signaling.


How murine models of human disease and immunity are influenced by housing temperature and mild thermal stress.

  • Caitlin M James‎ et al.
  • Temperature (Austin, Tex.)‎
  • 2023‎

At the direction of The Guide and Use of Laboratory Animals, rodents in laboratory facilities are housed at ambient temperatures between 20°C and 26°C, which fall below their thermoneutral zone (TNZ). TNZ is identified as a range of ambient temperatures that allow an organism to regulate body temperature without employing additional thermoregulatory processes (e.g. metabolic heat production driven by norepinephrine), thus leading to mild, chronic cold stress. For mice, this chronic cold stress leads to increased serum levels of the catecholamine norepinephrine, which has direct effects on various immune cells and several aspects of immunity and inflammation. Here, we review several studies that have revealed that ambient temperature significantly impacts outcomes in various murine models of human diseases, particularly those in which the immune system plays a major role in its pathogenesis. The impact of ambient temperature on experimental outcomes raises questions regarding the clinical relevance of some murine models of human disease, since studies examining rodents housed within thermoneutral ambient temperatures revealed that rodent disease pathology more closely resembled that of humans. Unlike laboratory rodents, humans can modify their surroundings accordingly - by adjusting their clothing, the thermostat, or their physical activity - to live within the appropriate TNZ, offering a possible explanation for why many studies using murine models of human disease conducted at thermoneutrality better represent patient outcomes. Thus, it is strongly recommended that ambient housing temperature in such studies be consistently and accurately reported and recognized as an important experimental variable.


CD8+ T cell metabolic flexibility elicited by CD28-ARS2 axis-driven alternative splicing of PKM supports antitumor immunity.

  • G Aaron Holling‎ et al.
  • Cellular & molecular immunology‎
  • 2024‎

Metabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism. ARS2 upregulation driven by CD28 signaling reinforced splicing factor recruitment to pre-mRNAs and affected approximately one-third of T-cell activation-induced alternative splicing events. Among these effects, the CD28-ARS2 axis suppressed the expression of the M1 isoform of pyruvate kinase in favor of PKM2, a key determinant of CD8+ T-cell glucose utilization, interferon gamma production, and antitumor effector function. Importantly, PKM alternative splicing occurred independently of CD28-driven PI3K pathway activation, revealing a novel means by which costimulation reprograms glucose metabolism in CD8+ T cells.


β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress.

  • Guanxi Qiao‎ et al.
  • Cancer immunology, immunotherapy : CII‎
  • 2019‎

Primary and secondary lymphoid organs are heavily innervated by the autonomic nervous system. Norepinephrine, the primary neurotransmitter secreted by post-ganglionic sympathetic neurons, binds to and activates β-adrenergic receptors expressed on the surface of immune cells and regulates the functions of these cells. While it is known that both activated and memory CD8+ T-cells primarily express the β2-adrenergic receptor (β2-AR) and that signaling through this receptor can inhibit CD8+ T-cell effector function, the mechanism(s) underlying this suppression is not understood. Under normal activation conditions, T-cells increase glucose uptake and undergo metabolic reprogramming. In this study, we show that treatment of murine CD8+ T-cells with the pan β-AR agonist isoproterenol (ISO) was associated with a reduced expression of glucose transporter 1 following activation, as well as decreased glucose uptake and glycolysis compared to CD8+ T-cells activated in the absence of ISO. The effect of ISO was specifically dependent upon β2-AR, since it was not seen in adrb2-/- CD8+ T-cells and was blocked by the β-AR antagonist propranolol. In addition, we found that mitochondrial function in CD8+ T-cells was also impaired by β2-AR signaling. This study demonstrates that one mechanism by which β2-AR signaling can inhibit CD8+ T-cell activation is by suppressing the required metabolic reprogramming events which accompany activation of these immune cells and thus reveals a new mechanism by which adrenergic stress can suppress the effector activity of immune cells.


Indoleamine 2,3-dioxygenase 1 is essential for sustaining durable antibody responses.

  • Shivana M Lightman‎ et al.
  • Immunity‎
  • 2021‎

Humoral immunity is essential for protection against pathogens, emphasized by the prevention of 2-3 million deaths worldwide annually by childhood immunizations. Long-term protective immunity is dependent on the continual production of neutralizing antibodies by the subset of long-lived plasma cells (LLPCs). LLPCs are not intrinsically long-lived, but require interaction with LLPC niche stromal cells for survival. However, it remains unclear which and how these interactions sustain LLPC survival and long-term humoral immunity. We now have found that the immunosuppressive enzyme indoleamine 2,3- dioxygenase 1 (IDO1) is required to sustain antibody responses and LLPC survival. Activation of IDO1 occurs upon the engagement of CD80/CD86 on the niche dendritic cells by CD28 on LLPC. Kynurenine, the product of IDO1 catabolism, activates the aryl hydrocarbon receptor in LLPC, reinforcing CD28 expression and survival signaling. These findings expand the immune function of IDO1 and uncover a novel pathway for sustaining LLPC survival and humoral immunity.


Improved hematopoietic differentiation of mouse embryonic stem cells through manipulation of the RNA binding protein ARS2.

  • Seerat Elahi‎ et al.
  • Stem cell research‎
  • 2020‎

The RNA binding protein ARS2 is highly expressed in hematopoietic progenitor populations and is required for adult hematopoiesis. Recent molecular studies found that ARS2 coordinates interactions between nascent RNA polymerase II transcripts and downstream RNA processing machineries, yet how such interactions influence hematopoiesis remains largely unknown. Techniques to differentiate embryonic stem cells (ESC) to hematopoietic progenitor cells (HPC) and mature blood cells have increased molecular understanding of hematopoiesis. Taking such an in vitro approach to examine the influence of ARS2 on hematopoiesis, we found that ARS2 suppresses expression of some HSC signature genes and differentiation of ESC to a HPC population (CSMD-HPC) identified by markers expressed on bone marrow resident hematopoietic stem cells. In line with ARS2's ability to promote proliferation of cultured cells, ARS2 knockout ESC showed limited expansion and yielded less CSMD-HPC than wild-type ESC. In contrast, transient ARS2 knockdown led to doubling the number of CSMD-HPC generated per ESC without affecting further differentiation into mature T-cells. Overall, data indicate that ARS2 negatively regulates early hematopoietic differentiation of ESC, in stark contrast to its supportive role in adult hematopoiesis. Consequently, manipulation of ARS2 expression and/or function has potential utility in hematopoietic cell engineering and regenerative medicine.


CD28 Regulates Metabolic Fitness for Long-Lived Plasma Cell Survival.

  • Adam Utley‎ et al.
  • Cell reports‎
  • 2020‎

Durable humoral immunity against epidemic infectious disease requires the survival of long-lived plasma cells (LLPCs). LLPC longevity is dependent on metabolic programs distinct from short-lived plasma cells (SLPCs); however, the mechanistic basis for this difference is unclear. We have previously shown that CD28, the prototypic T cell costimulatory receptor, is expressed on both LLPCs and SLPCs but is essential only for LLPC survival. Here we show that CD28 transduces pro-survival signaling specifically in LLPCs through differential SLP76 expression. CD28 signaling in LLPCs increased glucose uptake, mitochondrial mass/respiration, and reactive oxygen species (ROS) production. Unexpectedly, CD28-mediated regulation of mitochondrial respiration, NF-κB activation, and survival was ROS dependent. IRF4, a target of NF-κB, was upregulated by CD28 activation in LLPCs and decreased IRF4 levels correlated with decreased glucose uptake, mitochondrial mass, ROS, and CD28-mediated survival. Altogether, these data demonstrate that CD28 signaling induces a ROS-dependent metabolic program required for LLPC survival.


NK Receptors Replace CD28 As the Dominant Source of Signal 2 for Cognate Recognition of Cancer Cells by TAA-specific Effector CD8+ T Cells.

  • Bowen Dong‎ et al.
  • Research square‎
  • 2023‎

CD28-driven "signal 2" is critical for naïve CD8+ T cell responses to dendritic cell (DC)-presented weak antigens, including non-mutated tumor-associated antigens (TAAs). However, it is unclear how DC-primed cytotoxic T lymphocytes (CTLs) respond to the same TAAs presented by cancer cells which lack CD28 ligands. Here, we show that NK receptors (NKRs) DNAM-1 and NKG2D replace CD28 during CTL re-activation by cancer cells presenting low levels of MHC I/TAA complexes, leading to enhanced proximal TCR signaling, immune synapse formation, CTL polyfunctionality, release of cytolytic granules and antigen-specific cancer cell killing. Double-transduction of T cells with recombinant TCR and NKR constructs or upregulation of NKR-ligand expression on cancer cells by chemotherapy enabled effective recognition and killing of poorly immunogenic tumor cells by CTLs. Operational synergy between TCR and NKRs in CTL recognition explains the ability of cancer-expressed self-antigens to serve as tumor rejection antigens, helping to develop more effective therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: