Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice.

  • Laura Senatus‎ et al.
  • Communications biology‎
  • 2023‎

Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.


Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer.

  • Zina Dubeykovskaya‎ et al.
  • Nature communications‎
  • 2016‎

CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity. Here we show that splenic TFF2, a secreted anti-inflammatory peptide, is released by vagally modulated memory T cells to suppress the expansion of MDSCs through CXCR4. Splenic denervation interrupts the anti-inflammatory neural arc, resulting in the expansion of MDSCs and colorectal cancer. Deletion of Tff2 recapitulates splenic denervation to promote carcinogenesis. Colorectal carcinogenesis could be suppressed through transgenic overexpression of TFF2, adenoviral transfer of TFF2 or transplantation of TFF2-expressing bone marrow. TFF2 is important to the anti-inflammatory reflex arc and plays an essential role in arresting MDSC proliferation. TFF2 offers a potential approach to prevent and to treat cancer.


β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer.

  • Bernhard W Renz‎ et al.
  • Cancer cell‎
  • 2018‎

Catecholamines stimulate epithelial proliferation, but the role of sympathetic nerve signaling in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Catecholamines promoted ADRB2-dependent PDAC development, nerve growth factor (NGF) secretion, and pancreatic nerve density. Pancreatic Ngf overexpression accelerated tumor development in LSL-Kras+/G12D;Pdx1-Cre (KC) mice. ADRB2 blockade together with gemcitabine reduced NGF expression and nerve density, and increased survival of LSL-Kras+/G12D;LSL-Trp53+/R172H;Pdx1-Cre (KPC) mice. Therapy with a Trk inhibitor together with gemcitabine also increased survival of KPC mice. Analysis of PDAC patient cohorts revealed a correlation between brain-derived neurotrophic factor (BDNF) expression, nerve density, and increased survival of patients on nonselective β-blockers. These findings suggest that catecholamines drive a feedforward loop, whereby upregulation of neurotrophins increases sympathetic innervation and local norepinephrine accumulation.


Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis.

  • Dan He‎ et al.
  • Molecular cell‎
  • 2022‎

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


A Receptor of the Immunoglobulin Superfamily Regulates Adaptive Thermogenesis.

  • Carmen Hurtado Del Pozo‎ et al.
  • Cell reports‎
  • 2019‎

Exquisite regulation of energy homeostasis protects from nutrient deprivation but causes metabolic dysfunction upon nutrient excess. In human and murine adipose tissue, the accumulation of ligands of the receptor for advanced glycation end products (RAGE) accompanies obesity, implicating this receptor in energy metabolism. Here, we demonstrate that mice bearing global- or adipocyte-specific deletion of Ager, the gene encoding RAGE, display superior metabolic recovery after fasting, a cold challenge, or high-fat feeding. The RAGE-dependent mechanisms were traced to suppression of protein kinase A (PKA)-mediated phosphorylation of its key targets, hormone-sensitive lipase and p38 mitogen-activated protein kinase, upon β-adrenergic receptor stimulation-processes that dampen the expression and activity of uncoupling protein 1 (UCP1) and thermogenic programs. This work identifies the innate role of RAGE as a key node in the immunometabolic networks that control responses to nutrient supply and cold challenges, and it unveils opportunities to harness energy expenditure in environmental and metabolic stress.


RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism.

  • Laura Senatus‎ et al.
  • JCI insight‎
  • 2020‎

Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.


Loss of the wild-type KRAS allele promotes pancreatic cancer progression through functional activation of YAP1.

  • Han Yan‎ et al.
  • Oncogene‎
  • 2021‎

Human pancreatic ductal adenocarcinoma (PDAC) harboring one KRAS mutant allele often displays increasing genomic loss of the remaining wild-type (WT) allele (known as LOH at KRAS) as tumors progress to metastasis, yet the molecular ramification of this WT allelic loss is unknown. In this study, we showed that the restoration of WT KRAS expression in human PDAC cell lines with LOH at KRAS significantly attenuated the malignancy of PDAC cells both in vitro and in vivo, demonstrating a tumor-suppressive role of the WT KRAS allele. Through RNA-Seq, we identified the HIPPO signaling pathway to be positively regulated by WT KRAS in PDAC cells. In accordance with this observation, PDAC cells with LOH at KRAS exhibited increased nuclear localization and activation of transcriptional co-activator YAP1. Mechanistically, we discovered that WT KRAS expression sequestered YAP1 from the nucleus, through enhanced 14-3-3zeta interaction with phosphorylated YAP1 at S127. Consistently, expression of a constitutively-active YAP1 mutant in PDAC cells bypassed the growth inhibitory effects of WT KRAS. In patient samples, we found that the YAP1-activation genes were significantly upregulated in tumors with LOH at KRAS, and YAP1 nuclear localization predicted poor survival for PDAC patients. Collectively, our results reveal that the WT allelic loss leads to functional activation of YAP1 and enhanced tumor malignancy, which explains the selection advantage of the tumor cells with LOH at KRAS during pancreatic cancer clonal evolution and progression to metastasis, and should be taken into consideration in future therapeutic strategies targeting KRAS.


Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus.

  • Yoomi Lee‎ et al.
  • Oncotarget‎
  • 2017‎

The incidence of esophageal adenocarcinoma (EAC) is increasing, but factors contributing to malignant progression of its precursor lesion, Barrett's esophagus (BE), have not been defined. Hypergastrinemia caused by long-term use of proton pump inhibitors (PPIs), has been suggested as one possible risk factor. The gastrin receptor, CCK2R, is expressed in the cardia and upregulated in BE, suggesting the involvement of the gastrin-CCK2R pathway in progression. In the L2-IL-1β mouse model, Barrett's-like esophagus arises from the gastric cardia. Therefore, we aimed to analyze the effect of hypergastrinemia on CCK2R+ progenitor cells in L2-IL-1β mice.


Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential.

  • Daniel L Worthley‎ et al.
  • Cell‎
  • 2015‎

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells.

  • Xiang Dong Yang‎ et al.
  • Nature medicine‎
  • 2011‎

Histidine decarboxylase (HDC), the unique enzyme responsible for histamine generation, is highly expressed in myeloid cells, but its function in these cells is poorly understood. Here we show that Hdc-knockout mice show a high rate of colon and skin carcinogenesis. Using Hdc-EGFP bacterial artificial chromosome (BAC) transgenic mice in which EGFP expression is controlled by the Hdc promoter, we show that Hdc is expressed primarily in CD11b(+)Ly6G(+) immature myeloid cells (IMCs) that are recruited early on in chemical carcinogenesis. Transplant of Hdc-deficient bone marrow to wild-type recipients results in increased CD11b(+)Ly6G(+) cell mobilization and reproduces the cancer susceptibility phenotype of Hdc-knockout mice. In addition, Hdc-deficient IMCs promote the growth of tumor allografts, whereas mouse CT26 colon cancer cells downregulate Hdc expression through promoter hypermethylation and inhibit myeloid cell maturation. Exogenous histamine induces the differentiation of IMCs and suppresses their ability to support the growth of tumor allografts. These data indicate key roles for Hdc and histamine in myeloid cell differentiation and CD11b(+)Ly6G(+) IMCs in early cancer development.


Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop.

  • Xiaowei Chen‎ et al.
  • Cell stem cell‎
  • 2017‎

Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via lipopolysaccharide (LPS) treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically primed MB-HSCs to enforce homeostasis.


RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes.

  • Gurdip Daffu‎ et al.
  • Diabetes‎
  • 2015‎

Diabetes exacerbates cardiovascular disease, at least in part through suppression of macrophage cholesterol efflux and levels of the cholesterol transporters ATP binding cassette transporter A1 (ABCA1) and ABCG1. The receptor for advanced glycation end products (RAGE) is highly expressed in human and murine diabetic atherosclerotic plaques, particularly in macrophages. We tested the hypothesis that RAGE suppresses macrophage cholesterol efflux and probed the mechanisms by which RAGE downregulates ABCA1 and ABCG1. Macrophage cholesterol efflux to apolipoprotein A1 and HDL and reverse cholesterol transport to plasma, liver, and feces were reduced in diabetic macrophages through RAGE. In vitro, RAGE ligands suppressed ABCG1 and ABCA1 promoter luciferase activity and transcription of ABCG1 and ABCA1 through peroxisome proliferator-activated receptor-γ (PPARG)-responsive promoter elements but not through liver X receptor elements. Plasma levels of HDL were reduced in diabetic mice in a RAGE-dependent manner. Laser capture microdissected CD68(+) macrophages from atherosclerotic plaques of Ldlr(-/-) mice devoid of Ager (RAGE) displayed higher levels of Abca1, Abcg1, and Pparg mRNA transcripts versus Ager-expressing Ldlr(-/-) mice independently of glycemia or plasma levels of total cholesterol and triglycerides. Antagonism of RAGE may fill an important therapeutic gap in the treatment of diabetic macrovascular complications.


RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice.

  • Fei Song‎ et al.
  • Diabetes‎
  • 2014‎

In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.


Profiling of Stem/Progenitor Cell Regulatory Genes of the Synovial Joint by Genome-Wide RNA-Seq Analysis.

  • Yue Zhou‎ et al.
  • BioMed research international‎
  • 2018‎

Synovial joints suffer from arthritis and trauma that may be severely debilitative. Despite robust investigations in the roles of individual genes in synovial joint development and arthritis, little is known about global profiles of genes that regulate stem/progenitor cells of a synovial joint. The temporomandibular joint is a poorly understood synovial arthrosis with few clinical treatment options. Here, we isolated the articular and mature zones of the mandibular condyle by laser capture microdissection, performed genome-wide profiling, and analyzed molecular signaling pathways relevant to stem/progenitor cell functions. A total of 804 genes were differentially expressed between the articular and mature zones. Pathway analyses revealed 29 enriched signaling pathways, including the PI3K-Akt, Wnt, and Toll-like receptor signaling pathways that may regulate stem/progenitor cell homeostasis and differentiation into the chondrocyte lineage. Upstream regulator analyses further predicted potential upstream key regulators such as Xbp1, Nupr1, and Hif1a, and associated underlying mechanism networks were described. Among the multiple candidates of growth and transcriptional factors that may regulate stem/progenitor cells, we immunolocalized Sox9, Ihh, Frzb, Dkk1, Lgr5, and TGFβ3 in the articular and mature zones. These findings provide a comprehensive genetic mapping of growth and transcriptional genes in the articular and mature zones of a synovial joint condyle. Differentially expressed genes may play crucial roles in the regulation of stem/progenitor cells in development, homeostasis, and tissue regeneration.


Analysis of 16S rRNA genes reveals reduced Fusobacterial community diversity when translocating from saliva to GI sites.

  • Miles Richardson‎ et al.
  • Gut microbes‎
  • 2020‎

Fusobacterium nucleatum is a Gram-negative oral commensal anaerobe which has been increasingly implicated in various gastrointestinal (GI) disorders, including inflammatory bowel disease, appendicitis, GI cancers. The oral cavity harbors a diverse group of Fusobacterium, and it is postulated that F. nucleatum in the GI tract originate from the mouth. It is not known, however, if all oral Fusobacterium translocate to the GI sites with equal efficiencies. Therefore, we amplified 16S rRNA genes of F. nucleatum and F. periodonticum, two closely related oral species from matched saliva, gastric aspirates, and colon or ileal pouch aspirates of three patients with inflammatory bowel disease (IBD) and three healthy controls, and saliva alone from seven patients with either active IBD or IBD in remission. The 16S rRNA gene amplicons were cloned, and the DNA sequences determined by Sanger sequencing. The results demonstrate that fusobacterial community composition differs more significantly between the oral and GI sites than between different individuals. The oral communities demonstrate the highest level of variation and have the richest pool of unique sequences, with certain nodes/strains enriched in the GI tract and others diminished during translocation. The gastric and colon/pouch communities exhibit reduced diversity and are more closely related, possibly due to selective pressure in the GI tract. This study elucidates selective translocation of oral fusobacteria to the GI tract. Identification of specific transmissible clones will facilitate risk assessment for developing Fusobacterium-implicated GI disorders.


Inactivation of Notch4 Attenuated Pancreatic Tumorigenesis in Mice.

  • Kiyoshi Saeki‎ et al.
  • Cancer research communications‎
  • 2022‎

Expression of the Notch family of receptors is often upregulated in pancreatic ductal adenocarcinoma (PDAC). In this study, we focused on Notch4, which had not been investigated in PDAC. We generated KC (LSL-KrasG12D;p48-Cre), N4 - / - KC (Notch4- / -;LSL-KrasG12D;p48-Cre), PKC (p16fl/fl;LSL-KrasG12D;p48-Cre), and N4 - / - PKC (Notch4-/ -; p16fl/f l;LSL-KrasG12D;p48-Cre) genetically engineered mouse models (GEMM). We performed caerulein treatment in both KC and N4 - / - KC mice, and the development of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions were significantly diminished in the N4 - / - KC than in the KC GEMM (P = 0.01). This in vivo result was validated by in vitro ADM induction of the explant cultures of pancreatic acinar cells from the N4 - / - KC and KC mice (P < 0.001), confirming that Notch4 is an important contributor to early pancreatic tumorigenesis. To evaluate the role of Notch4 in the later stage of pancreatic tumorigenesis, we compared the PKC and N4 - / - PKC mice. The N4 - / - PKC mice had better overall survival (P = 0.012) and significantly reduced tumor burden (PanIN: P = 0.018 at 2 months, PDAC: P = 0.039 at 5 months) compared with the PKC GEMM. RNA-sequencing analysis of pancreatic tumor cell lines derived from the PKC and N4 - / - PKC GEMMs revealed that 408 genes were differentially expressed (FDR < 0.05) and Pcsk5 is a potential downstream effector of the Notch4 signaling pathway (P < 0.001). Low expression of Pcsk5 positively correlates with good survival in patients with PDAC (P = 0.028). We have identified a novel role for Notch4 signaling with tumor-promoting function in pancreatic tumorigenesis. Our study also uncovered a novel association between Pcsk5 and Notch4 signaling in PDAC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: