Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes.

  • Yves Maury‎ et al.
  • Nature biotechnology‎
  • 2015‎

Specification of cell identity during development depends on exposure of cells to sequences of extrinsic cues delivered at precise times and concentrations. Identification of combinations of patterning molecules that control cell fate is essential for the effective use of human pluripotent stem cells (hPSCs) for basic and translational studies. Here we describe a scalable, automated approach to systematically test the combinatorial actions of small molecules for the targeted differentiation of hPSCs. Applied to the generation of neuronal subtypes, this analysis revealed an unappreciated role for canonical Wnt signaling in specifying motor neuron diversity from hPSCs and allowed us to define rapid (14 days), efficient procedures to generate spinal and cranial motor neurons as well as spinal interneurons and sensory neurons. Our systematic approach to improving hPSC-targeted differentiation should facilitate disease modeling studies and drug screening assays.


Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus.

  • Rebecca A Piskorowski‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2013‎

Inhibition is critical for controlling information transfer in the brain. However, the understanding of the plasticity and particular function of different interneuron subtypes is just emerging. Using acute hippocampal slices prepared from adult mice, we report that in area CA2 of the hippocampus, a powerful inhibitory transmission is acting as a gate to prevent CA3 inputs from driving CA2 neurons. Furthermore, this inhibition is highly plastic, and undergoes a long-term depression following high-frequency 10 Hz or theta-burst induction protocols. We describe a novel form of long-term depression at parvalbumin-expressing (PV+) interneuron synapses that is dependent on delta-opioid receptor (DOR) activation. Additionally, PV+ interneuron transmission is persistently depressed by DOR activation in area CA2 but only transiently depressed in area CA1. These results provide evidence for a differential temporal modulation of PV+ synapses between two adjacent cortical circuits, and highlight a new function of PV+ cells in controlling information transfer.


Inhibitory Plasticity Permits the Recruitment of CA2 Pyramidal Neurons by CA3.

  • Kaoutsar Nasrallah‎ et al.
  • eNeuro‎
  • 2015‎

Area CA2 is emerging as an important region for hippocampal memory formation. However, how CA2 pyramidal neurons (PNs) are engaged by intrahippocampal inputs remains unclear. Excitatory transmission between CA3 and CA2 is strongly inhibited and is not plastic. We show in mice that different patterns of activity can in fact increase the excitatory drive between CA3 and CA2. We provide evidence that this effect is mediated by a long-term depression at inhibitory synapses (iLTD), as it is evoked by the same protocols and shares the same pharmacology. In addition, we show that the net excitatory drive of distal inputs is also increased after iLTD induction. The disinhibitory increase in excitatory drive is sufficient to allow CA3 inputs to evoke action potential firing in CA2 PNs. Thus, these data reveal that the output of CA2 PNs can be gated by the unique activity-dependent plasticity of inhibitory neurons in area CA2.


Routing Hippocampal Information Flow through Parvalbumin Interneuron Plasticity in Area CA2.

  • Kaoutsar Nasrallah‎ et al.
  • Cell reports‎
  • 2019‎

The hippocampus is critical for the formation of episodic memory. It is, therefore, important to understand intra-hippocampal circuitry, especially in the often overlooked area CA2. Using specific transgenic mouse lines combined with opto- and chemogenetics, we show that local plasticity of parvalbumin-expressing interneurons in area CA2 allows CA3 input to recruit CA2 pyramidal neurons (PNs), thereby increasing the excitatory drive between CA3 and CA1. CA2 PNs provide both stronger excitation and larger feed-forward inhibition onto deep, compared with superficial, CA1 PNs. This feed-forward inhibition, largely mediated by parvalbumin-expressing interneurons, normalizes the excitatory drive onto deep and superficial CA1 PNs. Finally, we identify a target of CA2 in area CA1, i.e., CA1 PNs, whose soma are located in stratum radiatum. These data provide insight into local hippocampal circuitry and reveal how localized plasticity can potentially control information flow in the larger hippocampal network.


Chronic Loss of CA2 Transmission Leads to Hippocampal Hyperexcitability.

  • Roman Boehringer‎ et al.
  • Neuron‎
  • 2017‎

Hippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network. In behaving mice, this led to spatially triggered episodes of network-wide hyperexcitability during exploration accompanied by the emergence of high-frequency discharges during rest. These findings reveal CA2 as a regulator of network processing in hippocampus and suggest that CA2-mediated inhibition in CA3 plays a key role in establishing the dynamic excitatory and inhibitory balance required for proper network function.


TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain.

  • Bina Santoro‎ et al.
  • Neuron‎
  • 2009‎

Hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels, which generate the I(h) current, mediate a number of important brain functions. The HCN1 isoform regulates dendritic integration in cortical pyramidal neurons and provides an inhibitory constraint on both working memory in prefrontal cortex and spatial learning and memory in the hippocampus. Altered expression of HCN1 following seizures may contribute to the development of temporal lobe epilepsy. Yet the regulatory networks and pathways governing HCN channel expression and function in the brain are largely unknown. Here, we report the presence of nine alternative N-terminal splice forms of the brain-specific cytoplasmic protein TRIP8b and demonstrate the differential effects of six isoforms to downregulate or upregulate HCN1 surface expression. Furthermore, we find that all TRIP8b isoforms inhibit channel opening by shifting activation to more negative potentials. TRIP8b thus functions as an auxiliary subunit that provides a mechanism for the dynamic regulation of HCN1 channel expression and function.


Heterogeneity in Kv2 Channel Expression Shapes Action Potential Characteristics and Firing Patterns in CA1 versus CA2 Hippocampal Pyramidal Neurons.

  • Stephanie Palacio‎ et al.
  • eNeuro‎
  • 2017‎

The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function.


Relationship between pore occupancy and gating in BK potassium channels.

  • Rebecca A Piskorowski‎ et al.
  • The Journal of general physiology‎
  • 2006‎

Permeant ions can have significant effects on ion channel conformational changes. To further understand the relationship between ion occupancy and gating conformational changes, we have studied macroscopic and single-channel gating of BK potassium channels with different permeant monovalent cations. While the slopes of the conductance-voltage curve were reduced with respect to potassium for all permeant ions, BK channels required stronger depolarization to open only when thallium was the permeant ion. Thallium also slowed the activation and deactivation kinetics. Both the change in kinetics and the shift in the GV curve were dependent on the thallium passing through the permeation pathway, as well as on the concentration of thallium. There was a decrease in the mean open time and an increase in the number of short flicker closing events with thallium as the permeating ion. Mean closed durations were unaffected. Application of previously established allosteric gating models indicated that thallium specifically alters the opening and closing transition of the channel and does not alter the calcium activation or voltage activation pathways. Addition of a closed flicker state into the allosteric model can account for the effect of thallium on gating. Consideration of the thallium concentration dependence of the gating effects suggests that the flicker state may correspond to the collapsed selectivity filter seen in crystal structures of the KcsA potassium channel under the condition of low permeant ion concentration.


The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation.

  • Vincent Robert‎ et al.
  • The Journal of general physiology‎
  • 2020‎

Recent studies have revealed that hippocampal area CA2 plays an important role in hippocampal network function. Disruption of this region has been implicated in neuropsychiatric disorders. It is well appreciated that cholinergic input to the hippocampus plays an important role in learning and memory. While the effect of elevated cholinergic tone has been well studied in areas CA1 and CA3, it remains unclear how changes in cholinergic tone impact synaptic transmission and the intrinsic properties of neurons in area CA2. In this study, we applied the cholinergic agonist carbachol and performed on-cell, whole-cell, and extracellular recordings in area CA2. We observed that under conditions of high cholinergic tone, CA2 pyramidal neurons depolarized and rhythmically fired bursts of action potentials. This depolarization depended on the activation of M1 and M3 cholinergic receptors. Furthermore, we examined how the intrinsic properties and action-potential firing were altered in CA2 pyramidal neurons treated with 10 µM carbachol. While this intrinsic burst firing persisted in the absence of synaptic transmission, bursts were shaped by synaptic inputs in the intact network. We found that both excitatory and inhibitory synaptic transmission were reduced upon carbachol treatment. Finally, we examined the contribution of different channels to the cholinergic-induced changes in neuronal properties. We found that a conductance from Kv7 channels partially contributed to carbachol-induced changes in resting membrane potential and membrane resistance. We also found that D-type potassium currents contributed to controlling several properties of the bursts, including firing rate and burst kinetics. Furthermore, we determined that T-type calcium channels and small conductance calcium-activated potassium channels play a role in regulating bursting activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: