Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Prostaglandin F2α stimulates adhesion, migration, invasion and proliferation of the human trophoblast cell line HTR-8/SVneo.

  • Monika Baryla‎ et al.
  • Placenta‎
  • 2019‎

The amount of prostaglandin F2α (PGF2α) in the uterine lumen increases during the window of implantation in many mammals, including humans. We hypothesized that PGF2α regulates processes related to human embryo implantation.


Prokineticin 1 is a novel factor regulating porcine corpus luteum function.

  • Monika Baryla‎ et al.
  • Scientific reports‎
  • 2023‎

Prokineticin 1 (PROK1) is a pleiotropic factor secreted by endocrine glands; however, its role has not been studied in the corpus luteum (CL) during pregnancy in any species. The present study aimed to investigate the contribution of PROK1 in regulating processes related to porcine CL function and regression: steroidogenesis, luteal cell apoptosis and viability, and angiogenesis. The luteal expression of PROK1 was greater on Days 12 and 14 of pregnancy compared to Day 9. PROK1 protein expression during pregnancy increased gradually and peaked on Day 14, when it was also significantly higher than that on Day 14 of the estrous cycle. Prokineticin receptor 1 (PROKR1) mRNA abundance increased on Days 12 and 14 of pregnancy, whereas PROKR2 elevated on Day 14 of the estrous cycle. PROK1, acting via PROKR1, stimulated the expression of genes involved in progesterone synthesis, as well as progesterone secretion by luteal tissue. PROK1-PROKR1 signaling reduced apoptosis and increased the viability of luteal cells. PROK1 acting through PROKR1 stimulated angiogenesis by increasing capillary-like structure formation by luteal endothelial cells and elevating angiogenin gene expression and VEGFA secretion by luteal tissue. Our results indicate that PROK1 regulates processes vital for maintaining luteal function during early pregnancy and the mid-luteal phase.


Prokineticin 1-prokineticin receptor 1 signaling in trophoblast promotes embryo implantation and placenta development.

  • Ewelina Goryszewska-Szczurek‎ et al.
  • Scientific reports‎
  • 2021‎

Successful pregnancy establishment in mammals depends on proper embryo-maternal communication. Prokineticin 1 (PROK1) is a secretory protein that exerts pleiotropic functions in various tissues. Despite the studies that have primarily been performed with human cell lines and mice, the function of PROK1 in trophoblasts has still not been fully elucidated. Hence, the aim of this study was to establish the role of PROK1 in trophoblasts during implantation and placentation. Prokineticin 1 mRNA was elevated in porcine trophoblasts during implantation and the early placentation period. Furthermore, we reveal that PROK1-PROKR1 signaling induces the expression of genes involved in the regulation of angiogenesis, immunological response, trophoblast cell adhesion, invasion, and proliferation, as well as stimulating phosphorylation of MAPK and PTK2. Ingenuity Pathway Analysis identified the aforementioned and also other functions associated with PROK1-regulated genes/proteins, such as cell-to-cell contact, epithelial tissue differentiation, Ca2+ release, lipid synthesis, and chemotaxis. We also showed evidence that PROK1 acting via PROKR1 increased trophoblast cell proliferation and adhesion. The PROK1-stimulated cell proliferation was mediated by PI3K/AKT/mTOR, MAPK, and cAMP, whereas adhesion was mediated by MAPK and/or PI3K/AKT signaling pathways. Concluding, our study suggests that PROK1 plays a pleiotropic role in trophoblast function during implantation and early placentation.


Estradiol-17β Regulates Expression of Luteal DNA Methyltransferases and Genes Involved in the Porcine Corpus Luteum Function In Vivo.

  • Piotr Kaczynski‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The corpus luteum (CL) is a temporary endocrine gland vital for pregnancy establishment and maintenance. Estradiol-17β (E2) is the major embryonic signal in pigs supporting the CL's function. The mechanisms of the luteoprotective action of E2 are still unclear. The present study aimed to determine the effect of E2 on luteal expression of factors involved in CL function. An in vivo model of intrauterine E2 infusions was applied. Gilts on day 12 of pregnancy and the estrous cycle were used as referential groups. Concentrations of E2 and progesterone were elevated in CLs of gilts receiving E2 infusions, compared to placebo-treated gilts. Estradiol-17β stimulated luteal expression of DNA-methyltransferase 1 (DNMT1), but decreased expression of DNMT3B gene and protein, as well as DNMT3A protein. Similar results for DNMT3A and 3B were observed in CLs on day 12 of pregnancy compared to day 12 of the estrous cycle. Intrauterine infusions of E2 altered luteal expression of the genes involved in CL function: PTGFR, PTGES, STAR, HSD17B1, CYP19A1, and PGRMC1. Our findings indicate a role for E2 in expression regulation of factors related to CL function and a novel potential for E2 to regulate DNA methylation as putative physiological mechanisms controlling luteal gene expression.


Autocrine and paracrine mechanisms of prostaglandin E₂ action on trophoblast/conceptus cells through the prostaglandin E₂ receptor (PTGER2) during implantation.

  • Agnieszka Waclawik‎ et al.
  • Endocrinology‎
  • 2013‎

The conceptus and endometrium secrete large amounts of prostaglandin E₂ (PGE₂) into the porcine uterine lumen during the periimplantation period. We hypothesized that PGE₂ acts on conceptus/trophoblast cells through auto- and paracrine mechanisms. Real-time RT-PCR analysis revealed that PGE₂ receptor (PTGER)2 mRNA was 14-fold greater in conceptuses/trophoblasts on days 14-25 (implantation and early placentation period) vs preimplantation day 10-13 conceptuses (P < .05). Similarly, expression of PTGER2 protein increased during implantation. Conceptus expression of PTGER4 mRNA and protein did not differ on days 10-19. PGE₂ stimulated PTGER2 mRNA expression in day 15 trophoblast cells through PTGER2 receptor signaling. PGE₂ elevated aromatase expression and estradiol-17β secretion by trophoblast cells. Moreover, PGE₂ and the PTGER2 agonist, butaprost, increased the adhesive capacity of both human HTR-8/SVneo trophoblast and primary porcine trophoblast cells to extracellular matrix. This PGE₂-induced alteration in trophoblast cell adhesion to extracellular matrix was abolished by incubation of these cells with AH6809 (PTGER2 antagonist), ITGAVB3-directed tetrapeptide arg-gly-asp-ser or integrin ITGAVB3 antibody. PGE₂ stimulated adhesion of porcine trophoblast cells via the estrogen receptor and MEK/MAPK signaling pathway. PGE₂ induced phosphorylation of MAPK1/MAPK3 through PTGER2 and up-regulated expression of cell adhesion proteins such as focal adhesion kinase and intercellular adhesion molecule-1. Our study indicates that elevated PGE₂ in the periimplantation uterine lumen stimulates conceptus PTGER2 expression, which in turn promotes trophoblast adhesion via integrins, and synthesis and secretion of the porcine embryonic signal estradiol-17β. Moreover, the mechanism through which PGE₂ increases trophoblast adhesion is not species specific because it is PTGER2- and integrin-dependent in both porcine and human trophoblast cells.


Estradiol-17β-Induced Changes in the Porcine Endometrial Transcriptome In Vivo.

  • Piotr Kaczynski‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Estradiol-17β (E2) is a key hormone regulating reproductive functions in females. In pigs, E2, as the main conceptus signal, initiates processes resulting in prolonged corpus luteum function, embryo development, and implantation. During early pregnancy the endometrium undergoes morphological and physiological transitions that are tightly related to transcriptome changes. Recently, however, the importance of E2 as a primary conceptus signal in the pig has been questionable. Thus, the aim of the present study was to determine the effects of E2 on the porcine endometrial transcriptome in vivo and to compare these effects with transcriptome profiles on day 12 of pregnancy. Microarray analysis revealed differentially expressed genes (DEGs) in response to E2 with overrepresented functional terms related to secretive functions, extracellular vesicles, cell adhesion, proliferation and differentiation, tissue rearrangements, immune response, lipid metabolism, and many others. Numerous common DEGs and processes for the endometrium on day 12 of pregnancy and E2-treated endometrium were identified. In summary, the present study is the first evidence for the effect of E2 on transcriptome profiles in porcine endometrium in vivo in the period corresponding to the maternal recognition of pregnancy. The presented results provide a valuable resource for further targeted studies considering genes and pathways regulated by conceptus-derived estrogens and their role in pregnancy establishment.


Prostaglandin F2α stimulates angiogenesis at the embryo-maternal interface during early pregnancy in the pig.

  • Piotr Kaczynski‎ et al.
  • Theriogenology‎
  • 2020‎

Blood vessel formation is a critical process for successful pregnancy establishment and placenta formation. Angiogenic factors such as vascular endothelial growth factor (VEGF), angiopoietins (ANGPTs) or fibroblast growth factor 2 (FGF2) are known to be involved in angiogenesis. However, the mechanism regulating their expression in the porcine endometrium and trophoblast has not been described during early pregnancy establishment. Recently, we reported an important role for prostaglandin F2α (PGF2α) in supporting processes accompanying the peri-implantation period in the pig. The aim of the present study was to determine the effect of PGF2α on angiogenic factor gene and protein expression at the embryo-maternal interface and on capillary-like structure formation by endometrial endothelial cells. In the present study, we used various in vitro models involving endometrial tissue explants, primary porcine trophoblast and endometrial endothelial cells, as well as a swine umbilical vein endothelial cell line (G1410). ANGPT1, ANGPT2 and FGF2 gene expression was analyzed in porcine endometrial explants and in primary trophoblast cells incubated with PGF2α (100 nM, 1 μM). VEGFA gene expression and protein secretion by porcine primary trophoblast cells were studied in vitro using primary trophoblast cells. A network formation assay using the G1410 cell line and primary endothelial cells of endometrial origin was performed to assess the effect of PGF2α on capillary-like structure formation. We found that PGF2α stimulated VEGFA gene expression (1 μM) and secretion of this protein (100 nM) by porcine trophoblast cells (P < 0.05). In endometrial explants, PGF2α increased the expression of the ANGPT1, ANGPT2 and FGF2 genes (P < 0.05). PGF2α stimulated the formation of capillary-like structures acting on porcine endometrial endothelial cells on days 15 and 20 of pregnancy and in the G1410 cell line (P < 0.05). PGF2α-stimulated endothelial cell network formation was diminished by using a MEK kinase inhibitor in G1410 cells. Our results indicate an important role for PGF2α in the regulation of angiogenesis at the embryo-maternal interface. PGF2α promotes angiogenesis in the porcine endometrium by activating the MAPK signaling pathway. The stimulating effect of PGF2α on the formation of capillary-like structures by endothelial cells, together with our previous findings, supports the hypothesis that PGF2α is an important factor promoting the development of the placenta during early pregnancy in the pig.


Novel role for conceptus signals in mRNA expression regulation by DNA methylation in porcine endometrium during early pregnancy†.

  • Piotr Kaczynski‎ et al.
  • Biology of reproduction‎
  • 2023‎

During early pregnancy, porcine conceptuses (the embryos with associated membranes) secrete estradiol-17β (E2)-their major signal for maternal recognition of pregnancy-and prostaglandin E2 (PGE2). Both hormones induce prominent changes of the endometrial transcriptome in vivo. Studies on endometrial pathologies have shown that E2 affects gene expression by epigenetic mechanisms related to DNA methylation. Herein, we determined the effects of E2 and PGE2 alone, and a combined E2 + PGE2 treatment administered into the uterine lumen in vivo on the expression and activity of DNA-methyltransferases (DNMTs) and on CpG methylation patterns of selected genes in porcine endometrium. To compare the effect of treatment with the physiological effect of pregnancy, endometria from day 12 pregnant/cyclic gilts were included. Both E2 and PGE2 significantly reduced the expression of DNMTs. Likewise, the expressions of DNMT1 and DNMT3A were decreased on day 12 of pregnancy compared to the estrous cycle. DNMT activity increased in endometrial samples following E2 treatment and in gilts on day 12 of pregnancy. Treatment with E2 alone and/or simultaneously with PGE2 altered endometrial DNA methylation of CpG sites of ADAMTS20, ADH1C, BGN, PSAT1, and WNT5A. Different CpG methylation patterns of ADAMTS20, BGN, DMBT1, RASSF1, and WNT5A were found in the endometrium on day 12 of pregnancy compared to day 12 of the estrous cycle. Significant correlations were detected between CpG methylation and gene expression for ADAMTS20, ADH1C, BGN, DMBT1, PSAT1, and WNT5A. Our results indicate that CpG methylation induced by embryonic signals may contribute to regulating endometrial gene expression during pregnancy establishment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: