Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX.

  • Loredana Poeta‎ et al.
  • American journal of human genetics‎
  • 2013‎

Intellectual disability (ID) and epilepsy often occur together and have a dramatic impact on the development and quality of life of the affected children. Polyalanine (polyA)-expansion-encoding mutations of aristaless-related homeobox (ARX) cause a spectrum of X-linked ID (XLID) diseases and chronic epilepsy, including infantile spasms. We show that lysine-specific demethylase 5C (KDM5C), a gene known to be mutated in XLID-affected children and involved in chromatin remodeling, is directly regulated by ARX through the binding in a conserved noncoding element. We have studied altered ARX carrying various polyA elongations in individuals with XLID and/or epilepsy. The changes in polyA repeats cause hypomorphic ARX alterations, which exhibit a decreased trans-activity and reduced, but not abolished, binding to the KDM5C regulatory region. The altered functioning of the mutants tested is likely to correlate with the severity of XLID and/or epilepsy. By quantitative RT-PCR, we observed a dramatic Kdm5c mRNA downregulation in murine Arx-knockout embryonic and neural stem cells. Such Kdm5c mRNA diminution led to a severe decrease in the KDM5C content during in vitro neuronal differentiation, which inversely correlated with an increase in H3K4me3 signal. We established that ARX polyA alterations damage the regulation of KDM5C expression, and we propose a potential ARX-dependent path acting via chromatin remodeling.


Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes.

  • Keith Al-Hasani‎ et al.
  • Developmental cell‎
  • 2013‎

It was recently demonstrated that embryonic glucagon-producing cells in the pancreas can regenerate and convert into insulin-producing β-like cells through the constitutive/ectopic expression of the Pax4 gene. However, whether α cells in adult mice display the same plasticity is unknown. Similarly, the mechanisms underlying such reprogramming remain unclear. We now demonstrate that the misexpression of Pax4 in glucagon(+) cells age-independently induces their conversion into β-like cells and their glucagon shortage-mediated replacement, resulting in islet hypertrophy and in an unexpected islet neogenesis. Combining several lineage-tracing approaches, we show that, upon Pax4-mediated α-to-β-like cell conversion, pancreatic duct-lining precursor cells are continuously mobilized, re-express the developmental gene Ngn3, and successively adopt a glucagon(+) and a β-like cell identity through a mechanism involving the reawakening of the epithelial-to-mesenchymal transition. Importantly, these processes can repeatedly regenerate the whole β cell mass and thereby reverse several rounds of toxin-induced diabetes, providing perspectives to design therapeutic regenerative strategies.


Neurog3 misexpression unravels mouse pancreatic ductal cell plasticity.

  • Andhira Vieira‎ et al.
  • PloS one‎
  • 2018‎

In the context of type 1 diabetes research and the development of insulin-producing β-cell replacement strategies, whether pancreatic ductal cells retain their developmental capability to adopt an endocrine cell identity remains debated, most likely due to the diversity of models employed to induce pancreatic regeneration. In this work, rather than injuring the pancreas, we developed a mouse model allowing the inducible misexpression of the proendocrine gene Neurog3 in ductal cells in vivo. These animals developed a progressive islet hypertrophy attributed to a proportional increase in all endocrine cell populations. Lineage tracing experiments indicated a continuous neo-generation of endocrine cells exhibiting a ductal ontogeny. Interestingly, the resulting supplementary β-like cells were found to be functional. Based on these findings, we suggest that ductal cells could represent a renewable source of new β-like cells and that strategies aiming at controlling the expression of Neurog3, or of its molecular targets/co-factors, may pave new avenues for the improved treatments of diabetes.


Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-like Cell Neogenesis.

  • Nouha Ben-Othman‎ et al.
  • Cell‎
  • 2017‎

The recent discovery that genetically modified α cells can regenerate and convert into β-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-β-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into β-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated β-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in β-like cell counts, suggestive of α-to-β-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated β-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity.

  • Jin Li‎ et al.
  • Cell‎
  • 2017‎

Type 1 diabetes is characterized by the destruction of pancreatic β cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional β-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic β cell mass from α cells.


The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice.

  • Anthony Beucher‎ et al.
  • PloS one‎
  • 2012‎

Intestinal hormones are key regulators of digestion and energy homeostasis secreted by rare enteroendocrine cells. These cells produce over ten different hormones including GLP-1 and GIP peptides known to promote insulin secretion. To date, the molecular mechanisms controlling the specification of the various enteroendocrine subtypes from multipotent Neurog3(+) endocrine progenitor cells, as well as their number, remain largely unknown. In contrast, in the embryonic pancreas, the opposite activities of Arx and Pax4 homeodomain transcription factors promote islet progenitor cells towards the different endocrine cell fates. In this study, we thus investigated the role of Arx and Pax4 in enteroendocrine subtype specification. The small intestine and colon of Arx- and Pax4-deficient mice were analyzed using histological, molecular, and lineage tracing approaches. We show that Arx is expressed in endocrine progenitors (Neurog3(+)) and in early differentiating (ChromograninA(-)) GLP-1-, GIP-, CCK-, Sct- Gastrin- and Ghrelin-producing cells. We noted a dramatic reduction or a complete loss of all these enteroendocrine cell types in Arx mutants. Serotonin- and Somatostatin-secreting cells do not express Arx and, accordingly, the differentiation of Serotonin cells was not affected in Arx mutants. However, the number of Somatostatin-expressing D-cells is increased as Arx-deficient progenitor cells are redirected to the D-cell lineage. In Pax4-deficient mice, the differentiation of Serotonin and Somatostatin cells is impaired, as well as of GIP and Gastrin cells. In contrast, the number of GLP-1 producing L-cells is increased concomitantly with an upregulation of Arx. Thus, while Arx and Pax4 are necessary for the development of L- and D-cells respectively, they conversely restrict D- and L-cells fates suggesting antagonistic functions in D/L cell allocation. In conclusion, these finding demonstrate that, downstream of Neurog3, the specification of a subset of enteroendocrine subtypes relies on both Arx and Pax4, while others depend only on Arx or Pax4.


Ectopic expression of Pax4 in pancreatic δ cells results in β-like cell neogenesis.

  • Noémie Druelle‎ et al.
  • The Journal of cell biology‎
  • 2017‎

The recent demonstration that pancreatic α cells can be continuously regenerated and converted into β-like cells upon ectopic expression of Pax4 opened new avenues of research in the endocrine cell differentiation and diabetes fields. To determine whether such plasticity was also shared by δ cells, we generated and characterized transgenic animals that express Pax4 specifically in somatostatin-expressing cells. We demonstrate that the ectopic expression of Pax4 in δ cells is sufficient to induce their conversion into functional β-like cells. Importantly, this conversion induces compensatory mechanisms involving the reactivation of endocrine developmental processes that result in dramatic β-like cell hyperplasia. Importantly, these β-like cells are functional and can partly reverse the consequences of chemically induced diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: