Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 185 papers

Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells.

  • Chunyang Du‎ et al.
  • Drug design, development and therapy‎
  • 2015‎

The dysregulation of cholesterol metabolism and inflammation plays a significant role in the progression of diabetic nephropathy (DN). Anthocyanins are polyphenols widely distributed in food and exert various biological effects including antioxidative, anti-inflammatory, and antihyperlipidemic effects. However, it remains unclear whether anthocyanins are associated with DN, and the mechanisms involved in the reciprocal regulation of inflammation and cholesterol efflux are yet to be elucidated. In this study, we evaluated the regulation of cholesterol metabolism and the anti-inflammatory effects exerted by anthocyanins (cyanidin-3-O-β-glucoside chloride [C3G] or cyanidin chloride [Cy]) and investigated the underlying molecular mechanism of action using high-glucose (HG)-stimulated HK-2 cells. We found that anthocyanins enhanced cholesterol efflux and ABCA1 expression markedly in HK-2 cells. In addition, they increased peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptor alpha (LXRα) expression and decreased the HG-induced expression of the proinflammatory cytokines intercellular adhesion molecule-1 (ICAM1), monocyte chemoattractant protein-1 (MCP1), and transforming growth factor-β1 (TGFβ1), as well as NFκB activation. Incubation with the PPARα-specific inhibitor GW6471 and LXRα shRNA attenuated the anthocyanin-mediated promotion of ABCA1 expression and cholesterol efflux, suggesting that anthocyanins activated PPARα-LXRα-ABCA1-dependent cholesterol efflux in HK-2 cells. Moreover, the knockout of LXRα abrogated the anti-inflammatory effect of anthocyanins, whereas the PPARα antagonist GW6471 does not have this effect. Further investigations revealed that LXRα might interfere with anthocyanin-induced decreased ICAM1, MCP1, and TGFβ1 expression by reducing the nuclear translocation of NFκB. Collectively, these findings suggest that blocking cholesterol deposition and inhibiting the LXRα pathway-induced inflammatory response might be one of the main mechanisms by which anthocyanins exert their protective effects in DN.


RNA interferences targeting the Fanconi anemia/BRCA pathway upstream genes reverse cisplatin resistance in drug-resistant lung cancer cells.

  • Chun-Hua Dai‎ et al.
  • Journal of biomedical science‎
  • 2015‎

Cisplatin is one of the most commonly used chemotherapy agent for lung cancer. The therapeutic efficacy of cisplatin is limited by the development of resistance. In this study, we test the effect of RNA interference (RNAi) targeting Fanconi anemia (FA)/BRCA pathway upstream genes on the sensitivity of cisplatin-sensitive (A549 and SK-MES-1) and -resistant (A549/DDP) lung cancer cells to cisplatin.


A dynamic analysis of IRS-PKR signaling in liver cells: a discrete modeling approach.

  • Ming Wu‎ et al.
  • PloS one‎
  • 2009‎

A major challenge in systems biology is to develop a detailed dynamic understanding of the functions and behaviors in a particular cellular system, which depends on the elements and their inter-relationships in a specific network. Computational modeling plays an integral part in the study of network dynamics and uncovering the underlying mechanisms. Here we proposed a systematic approach that incorporates discrete dynamic modeling and experimental data to reconstruct a phenotype-specific network of cell signaling. A dynamic analysis of the insulin signaling system in liver cells provides a proof-of-concept application of the proposed methodology. Our group recently identified that double-stranded RNA-dependent protein kinase (PKR) plays an important role in the insulin signaling network. The dynamic behavior of the insulin signaling network is tuned by a variety of feedback pathways, many of which have the potential to cross talk with PKR. Given the complexity of insulin signaling, it is inefficient to experimentally test all possible interactions in the network to determine which pathways are functioning in our cell system. Our discrete dynamic model provides an in silico model framework that integrates potential interactions and assesses the contributions of the various interactions on the dynamic behavior of the signaling network. Simulations with the model generated testable hypothesis on the response of the network upon perturbation, which were experimentally evaluated to identify the pathways that function in our particular liver cell system. The modeling in combination with the experimental results enhanced our understanding of the insulin signaling dynamics and aided in generating a context-specific signaling network.


NAMPT inhibitor protects ischemic neuronal injury in rat brain via anti-neuroinflammation.

  • Chen-Xiang Chen‎ et al.
  • Neuroscience‎
  • 2017‎

Nicotinamide phosphoribosyltransferase (NAMPT) is an important neuroprotective factor in cerebral ischemia, and it has been reported that NAMPT inhibitors can aggravate neuronal injury in the acute phase. However, because it is a cytokine, NAMPT participates in many inflammatory diseases in the peripheral system, and its inhibitors have therapeutic effects. Following cerebral ischemia, the peripheral and resident inflammatory and immune cells produce many pro-inflammatory mediators in the ischemic area, which induce neuroinflammation and impair the brain. However, the effects of NAMPT inhibitors in the neuroinflammation after ischemic brain injury remain unknown. Here, we found that FK866, a potent NAMPT inhibitor, decreased the level of TNF-α, NAMPT and IL-6 in the ischemic brain tissue one day after middle-cerebral-artery occlusion and reperfusion (MCAO/R), improved neurological dysfunction, decreased infarct volume and neuronal loss, and inhibited microgliosis and astrogliosis 14days after MCAO/R. The expression of NAMPT protein was induced in Iba1-positive microglia/macrophages in the ischemia core 14days after MCAO/R. In vitro studies show that oxygen-glucose deprivation and recovery (OGD/R) activate microglia. Activated microglia increased the activity of NF-κB, increased the mRNA synthesis of TNF-α, NAMPT and IL-6, and increased the secretion of TNF-α, NAMPT and IL-6. On the other hand, NAMPT can act synergistically with other cytokines and activate microglia. FK866 strongly inhibited these changes and alleviated OGD/R-induced activation of microglia. As such, NAMPT is a crucial determinant of cellular inflammation after cerebral ischemia. NAMPT inhibitors are novel compounds to protect neuronal injury from ischemia via anti-inflammatory effects.


Spasticity assessment based on the Hilbert-Huang transform marginal spectrum entropy and the root mean square of surface electromyography signals: a preliminary study.

  • Baohua Hu‎ et al.
  • Biomedical engineering online‎
  • 2018‎

Most of the objective and quantitative methods proposed for spasticity measurement are not suitable for clinical application, and methods for surface electromyography (sEMG) signal processing are mainly limited to the time-domain. This study aims to quantify muscle activity in the time-frequency domain, and develop a practical clinical method for the objective and reliable evaluation of the spasticity based on the Hilbert-Huang transform marginal spectrum entropy (HMSEN) and the root mean square (RMS) of sEMG signals.


ACTB Variants Confer the Genetic Susceptibility to Diabetic Kidney Disease in a Han Chinese Population.

  • Mengxia Li‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Beta-actin (ACTB) loss-of-function mutations result in a pleiotropic developmental disorder of kidney. The present study aims to explore whether the common variants at the ACTB gene contribute to diabetic kidney disease (DKD) susceptibility in patients with type 2 diabetes mellitus (T2DM). From the baseline population of 20,340 diabetic patients, 1,510 DKD cases and 1,510 age-matched T2DM controls were selected. All subjects were Han Chinese. Three tagging single nucleotide polymorphisms (SNPs), rs852423, rs852426, and rs2966449, at the ACTB gene were genotyped. Logistic regression was performed to estimate the association with DKD. SNPs, rs852426 and rs2966449, were significantly associated with DKD [additive model; odds ratio (OR), 1.217 and 1.151; P = 0.001 and 0.018, respectively]. The association of rs852426 with DKD still remained statistically significant after Bonferroni correction and particularly significant in the population older than 70 years rather than the 70 years or younger (P = 0.047 for heterogeneity test). Furthermore, the association of rs852426 with DKD was observed in populations of male and females without smoking, drinking, and with duration for T2DM 10-20 years. The association of rs2966449 with DKD was also found in the populations older than 70 years, male, not smoking, not drinking, and with duration for T2DM over 20 years. The estimated glomerular filtration rate (eGFR) levels of the individuals with TT or CC genotypes of rs2966449 were significantly lower than that of TC genotype in DKD cases (P = 0.021). The present study provides evidence that the ACTB variants, i.e., rs852426 and rs2966449, may confer the genetic susceptibility to DKD in a Han Chinese population.


Evidence for a common mechanism of spatial attention and visual awareness: Towards construct validity of pseudoneglect.

  • Jiaqing Chen‎ et al.
  • PloS one‎
  • 2019‎

Present knowledge of attention and awareness centres on deficits in patients with right brain damage who show severe forms of inattention to the left, called spatial neglect. Yet the functions that are lost in neglect are poorly understood. In healthy people, they might produce "pseudoneglect"-subtle biases to the left found in various tests that could complement the leftward deficits in neglect. But pseudoneglect measures are poorly correlated. Thus, it is unclear whether they reflect anything but distinct surface features of the tests. To probe for a common mechanism, here we asked whether visual noise, known to increase leftward biases in the grating-scales task, has comparable effects on other measures of pseudoneglect. We measured biases using three perceptual tasks that require judgments about size (landmark task), luminance (greyscales task) and spatial frequency (grating-scales task), as well as two visual search tasks that permitted serial and parallel search or parallel search alone. In each task, we randomly selected pixels of the stimuli and set them to random luminance values, much like a poor TV signal. We found that participants biased their perceptual judgments more to the left with increasing levels of noise, regardless of task. Also, noise amplified the difference between long and short lines in the landmark task. In contrast, biases during visual searches were not influenced by noise. Our data provide crucial evidence that different measures of perceptual pseudoneglect, but not exploratory pseudoneglect, share a common mechanism. It can be speculated that this common mechanism feeds into specific, right-dominant processes of global awareness involved in the integration of visual information across the two hemispheres.


A family pedigree of malignancies associated with BRCA1 pathogenic variants: a reflection of the state of art in China.

  • Wenhui Li‎ et al.
  • Hereditary cancer in clinical practice‎
  • 2019‎

Little is known about the status of genetic counseling for ovarian cancer in China.


Nicotinamide phosphoribosyltransferase secreted from microglia via exosome during ischemic injury.

  • Yun-Bi Lu‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the salvage pathway of nicotinamide adenine dinucleotide synthesis. NAMPT can also be secreted and functions as a cytokine. We have previously shown that in the brain, NAMPT expression and secretion can be induced in microglia upon neuroinflammation and injury. Yet the mechanism for NAMPT secretion remains unclear. Here we show that NAMPT can be actively secreted from microglia upon the treatment of ischemia-like injury - oxygen-glucose deprivation and recovery (OGD/R). We confirmed that classical ER-Golgi pathway is not involved in NAMPT secretion. NAMPT secretion was further enhanced by ATP, and the secretion was mediated by P2X7 receptor and by intracellular Ca2+ . Importantly, we found that phospholipase D inhibitor, n-butanol, phospholipase D siRNA, and wortmannin significantly decreased OGD/R-induced and ATP-enhanced release of NAMPT in microglia. After excluding the mechanisms of involving secretory autophagy, endosomes, and secretory lysosome, we have concluded that microglial NAMPT is secreted mainly via exosome. Immune-electron microscopy identifies NAMPT in extracellular vesicles with the size and morphology characteristic of exosome. With the vesicles harvested by ultra-centrifugation, exosomal NAMPT is further confirmed by Western blotting analysis. Intriguingly, the amount of NAMPT relative to exosomal protein markers remains unchanged upon the treatment of OGD/R, suggesting a constant load of exosomal NAMPT in microglia. Taken together, we have identified NAMPT is actively secreted via exosome from microglia during neuroinflammation of ischemic injury.


MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2.

  • Yan Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs) has been regarded as a central issue in fracture healing. MicroRNAs (miRNAs, miRs) participate in diverse physiological processes such as osteoblastic differentiation of BMSCs. In this study, we found that miR-664a-5p was upregulated during osteogenic differentiation of human BMSCs, and this upregulation positively correlated with the expression of osteogenic genes Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteocalcin (OCN). Overexpression of miR-664a-5p promoted the osteogenic differentiation of BMSCs, whereas a knockdown of miR-664a-5p suppressed it. Additionally, high-mobility group A2 (HMGA2) mRNA was identified as a direct target of miR-664a-5p that mediates the function of this miRNA. Overexpression of HMGA2 obviously attenuated miR-664a-5p-induced osteogenic differentiation of BMSCs. Thus, the newly identified miR-664a-5p-HMGA2 pathway expands our understanding of the mechanisms underlying the osteogenic differentiation of human BMSCs, may provide deeper insights into the regulation of this differentiation, and can point to new effective methods for treating osteoporosis.


Thymosin α1 therapy in critically ill patients with COVID-19: A multicenter retrospective cohort study.

  • Ming Wu‎ et al.
  • International immunopharmacology‎
  • 2020‎

COVID-19 characterized by refractory hypoxemia increases patient mortality because of immunosuppression effects. This study aimed to evaluate the efficacy of immunomodulatory with thymosin α1 for critical COVID-19 patients.


CircRNA_104565 Promoted Cell Proliferation in Papillary Thyroid Carcinoma by Sponging miR-134.

  • Jianming Gong‎ et al.
  • International journal of general medicine‎
  • 2021‎

Thyroid cancer is one of the most common cancers with rising incidence worldwide, and papillary thyroid carcinoma (PTC) accounts for 80-85% of thyroid malignancy. Although it has been reported that many genes relate to the carcinogenesis of PTC, the molecular mechanisms remain mostly unclear.


MEKK2 and MEKK3 orchestrate multiple signals to regulate Hippo pathway.

  • Jinqiu Lu‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The Hippo pathway is an evolutionarily conserved signaling pathway that controls organ size in animals via the regulation of cell proliferation and apoptosis. It consists of a kinase cascade, in which MST1/2 and MAP4Ks phosphorylate and activate LATS1/2, which in turn phosphorylate and inhibit YAP/TAZ activity. A variety of signals can modulate LATS1/2 kinase activity to regulate Hippo pathway. However, the full mechanistic details of kinase-mediated regulation of Hippo pathway signaling remain elusive. Here, we report that TNF activates LATS1/2 and inhibits YAP/TAZ activity through MEKK2/3. Furthermore, MEKK2/3 act in parallel to MST1/2 and MAP4Ks to regulate LATS1/2 and YAP/TAZ in response to various signals, such as serum and actin dynamics. Mechanistically, we show that MEKK2/3 interact with LATS1/2 and YAP/TAZ and phosphorylate them. In addition, Striatin-interacting phosphatase and kinase (STRIPAK) complex associates with MEKK3 via CCM2 and CCM3 to inactivate MEKK3 kinase activity. Upstream signals of Hippo pathway trigger the dissociation of MEKK3 from STRIPAK complex to release MEKK3 activity. Our work has uncovered a previous unrecognized regulation of Hippo pathway via MEKK2/3 and provides new insights into molecular mechanisms for the interplay between Hippo-YAP and NF-κB signaling and the pathogenesis of cerebral cavernous malformations.


Molecular subtypes in canine hemangiosarcoma reveal similarities with human angiosarcoma.

  • Guannan Wang‎ et al.
  • PloS one‎
  • 2020‎

Angiosarcoma (AS) is a rare neoplasm with limited treatment options and a poor survival rate. Development of effective therapies is hindered by the rarity of this disease. Dogs spontaneously develop hemangiosarcoma (HSA), a common, histologically similar neoplasm. Metastatic disease occurs rapidly and despite chemotherapy, most dogs die several months after diagnosis. These features suggest that HSA might provide a tractable model to test experimental therapies in clinical trials. We previously reported whole exome sequencing of 20 HSA cases. Here we report development of a NGS targeted resequencing panel to detect driver mutations in HSA and other canine tumors. We validated the panel by resequencing the original 20 cases and sequenced 30 additional cases. Overall, we identified potential driver mutations in over 90% of the cases, including well-documented (in human cancers) oncogenic mutations in PIK3CA (46%), PTEN (6%), PLCG1(4%), and TP53 (66%), as well as previously undetected recurrent activating mutations in NRAS (24%). The driver role of these mutations is further demonstrated by augmented downstream signaling crucial to tumor growth. The recurrent, mutually exclusive mutation patterns suggest distinct molecular subtypes of HSA. Driver mutations in some subtypes closely resemble those seen in some AS cases, including NRAS, PLCG1, PIK3CA and TP53. Furthermore, activation of the MAPK and PI3K pathways appear to be key oncogenic mechanisms in both species. Together, these observations suggest that dogs with spontaneous HSA could serve as a useful model for testing the efficacy of targeted therapies, some of which could potentially be of therapeutic value in AS.


Dynamic changes and clinical significance of LXA4 in the perioperative period of cardiopulmonary bypass.

  • Ming Wu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Dynamic changes in lipoxin A4 (LXA4) in child patients with congenital heart disease (CHD), in the perioperative period of cardiopulmonary bypass (CPB) were studied. Peripheral blood was collected from 16 child patients (CPB group) before operation (Tc), after operation (T0), at 1 day after operation (T1), at 3 days after operation (T3), and at 7 days after operation (T7); and from 17 children with no CHD (control group). The level of LXA4 in peripheral blood was detected via enzyme-linked immunosorbent assay (ELISA). Clinical data of the child patients were collected. The white blood cell (WBC) count, the proportion of neutrophils (N%) and high-sensitivity C-reactive protein (hs-CRP) levels were also detected, followed by statistical analysis. The plasma LXA4 levels in CPB group at Tc were significantly lower compared to that in the control group (P<0.01). In CPB group, the level of LXA4 showed an increasing trend at T0, WBC and hs-CRP were transiently increased at T0 and increased most significantly at T1. N% was obviously increased at T0 compared to that at Tc and was still significantly higher at T7 compared to that at Tc. The CPB time and aortic clamping time were positively correlated with the time in the Pediatric Intensive Care Unit (PICU), the application time of ventilator, and the hs-CRP level at T0. The LXA4 level at each time-point had no correlation with other indexes. In conclusion, the inflammatory response after CPB increases the synthesis of LXA4 with an anti-inflammatory effect, but LXA4 cannot be used as a sensitive index for monitoring inflammation.


Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy.

  • Xiaoyan Wang‎ et al.
  • Journal of nanobiotechnology‎
  • 2021‎

Photodynamic therapy (PDT), a typical reactive oxygen species (ROS)-dependent treatment with high controllability, has emerged as an alternative cancer therapy modality but its therapeutic efficacy is still unsatisfactory due to the limited light penetration and constant oxygen consumption. With the development of another ROS-dependent paradigm ferroptosis, several efforts have been made to conquer the poor efficacy by combining these two approaches; however the biocompatibility, tumor-targeting capacity and clinical translation prospect of current studies still exist great concerns. Herein, a novel hypoxia-responsive nanoreactor BCFe@SRF with sorafenib (SRF) loaded inside, constructed by covalently connecting chlorin e6 conjugated bovine serum albumin (BSA-Ce6) and ferritin through azobenzene (Azo) linker, were prepared to offer unmatched opportunities for high-efficient PDT and ferroptosis synergistic therapy.


Hsa_circ_0110757 upregulates ITGA1 to facilitate temozolomide resistance in glioma by suppressing hsa-miR-1298-5p.

  • Haoyu Li‎ et al.
  • Cell death & disease‎
  • 2021‎

Temozolomide (TMZ) is the internationally recognized and preferred drug for glioma chemotherapy treatment. However, TMZ resistance in glioma appears after long-term use and is an urgent problem that needs to be solved. Circular RNAs (circRNAs) are noncoding RNAs and play an important role in the pathogenesis and progression of tumors. Hsa_circ_0110757 was identified in TMZ-resistant glioma cells by high-throughput sequencing analysis and was derived from reverse splicing of myeloid cell leukemia-1 (Mcl-1) exons. The role of hsa_circ_0110757 in TMZ-resistant glioma was evaluated both in vitro and in vivo. It was found that hsa_circ_0110757 and ITGA1 are more highly expressed in TMZ-resistant glioma than in TMZ-sensitive glioma. The overexpression of hsa_circ_0110757 in glioma patients treated with TMZ was obviously associated with tumor invasion. This study indicates that hsa_circ_0110757 inhibits glioma cell apoptosis by sponging hsa-miR-1298-5p to promote ITGA1 expression. Thus, hsa_circ_0110757/hsa-miR-1298-5p/ITGA could be a potential therapeutic target for reversing the resistance of glioma to TMZ.


The association between daily total physical activity and risk of cardiovascular disease among hypertensive patients: a 10-year prospective cohort study in China.

  • Tingyu Zhou‎ et al.
  • BMC public health‎
  • 2021‎

The effect of high levels of physical activity and relationship between daily total physical activity and the risk of cardiovascular disease (CVD) among hypertensive people were not clear. This study aimed to explore the optimum level of physical activity for CVD prevention.


Epidemiology of 631 Cases of COVID-19 Identified in Jiangsu Province Between January 1st and March 20th 2020: Factors Associated with Disease Severity and Analysis of Zero Mortality.

  • Hong Ji‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2021‎

BACKGROUND This retrospective study aimed to investigate the factors associated with disease severity and patient outcomes in 631 patients with COVID-19 who were reported to the Jiangsu Commission of Health between January 1 and March 20, 2020. MATERIAL AND METHODS We conducted an epidemiological investigation enrolling 631 patients with laboratory-confirmed COVID-19 from our clinic from January to March 2020. Patients' information was collected through a standard questionnaire. Then, we described the patients' epidemiological characteristics, analyzed risk factors associated with disease severity, and assessed causes of zero mortality. Additionally, some key technologies for epidemic prevention and control were identified. RESULTS Of the 631 patients, 8.46% (n=53) were severe cases, and no deaths were recorded (n=0). The epidemic of COVID-19 has gone through 4 stages: a sporadic phase, an exponential growth phase, a peak plateau phase, and a declining phase. The proportion of severe cases was significantly different among the 4 stages and 13 municipal prefectures (P<0.001). Factors including age >65 years old, underlying medical conditions, highest fever >39.0°C, dyspnea, and lymphocytopenia (<1.0×10⁹/L) were early warning signs of disease severity (P<0.05). In contrast, earlier clinic visits were associated with better patient outcomes (P=0.029). Further, the viral load was a potentially useful marker associated with COVID-19 infection severity. CONCLUSIONS The study findings from the beginning of the COVID-19 epidemic in Jiangsu Province, China showed that patients who were more than 65 years of age and with comorbidities and presented with a fever of more than 39.0°C developed more severe disease. However, mortality was prevented in this initial patient population by early supportive clinical management.


miR-452-3p inhibited osteoblast differentiation by targeting Smad4.

  • Ming Wu‎ et al.
  • PeerJ‎
  • 2021‎

Osteoblast differentiation is a complex process that is essential for normal bone formation. A growing number of studies have shown that microRNAs (miRNAs) are key regulators in a variety of physiological and pathological processes, including osteogenesis. In this study, BMP2 was used to induce MC3T3-E1 cells to construct osteoblast differentiation cell model. Then, we investigated the effect of miR-452-3p on osteoblast differentiation and the related molecular mechanism by RT-PCR analysis, Western blot analysis, ALP activity, and Alizarin Red Staining. We found that miR-452-3p was significantly downregulated in osteoblast differentiation. Overexpression miR-452-3p (miR-452-3p mimic) significantly inhibited the expression of osteoblast marker genes RUNX2, osteopontin (OPN), and collagen type 1 a1 chain (Col1A1), and decreased the number of calcium nodules and ALP activity. In contrast, knockdown miR-452-3p (miR-452-3p inhibitor) produced the opposite effect. In terms of mechanism, we found that Smad4 may be the target of miR-452-3p, and knockdown Smad4 (si-Smad4) partially inhibited the osteoblast differentiation enhanced by miR-452-3p. Our results suggested that miR-452-3p plays an important role in osteoblast differentiation by targeting Smad4. Therefore, miR-452-3p is expected to be used in the treatment of bone formation and regeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: