Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy.

  • Elena Y Demireva‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.


Tianeptine, but not fluoxetine, decreases avoidant behavior in a mouse model of early developmental exposure to fluoxetine.

  • Elizabeth A Pekarskaya‎ et al.
  • Scientific reports‎
  • 2021‎

Depression and anxiety, two of the most common mental health disorders, share common symptoms and treatments. Most pharmacological agents available to treat these disorders target monoamine systems. Currently, finding the most effective treatment for an individual is a process of trial and error. To better understand how disease etiology may predict treatment response, we studied mice exposed developmentally to the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX). These mice show the murine equivalent of anxiety- and depression-like symptoms in adulthood and here we report that these mice are also behaviorally resistant to the antidepressant-like effects of adult SSRI administration. We investigated whether tianeptine (TIA), which exerts its therapeutic effects through agonism of the mu-opioid receptor instead of targeting monoaminergic systems, would be more effective in this model. We found that C57BL/6J pups exposed to FLX from postnatal day 2 to 11 (PNFLX, the mouse equivalent in terms of brain development to the human third trimester) showed increased avoidant behaviors as adults that failed to improve, or were even exacerbated, by chronic SSRI treatment. By contrast, avoidant behaviors in these same mice were drastically improved following chronic treatment with TIA. Overall, this demonstrates that TIA may be a promising alternative treatment for patients that fail to respond to typical antidepressants, especially in patients whose serotonergic system has been altered by in utero exposure to SSRIs.


Dopamine transporter blockade during adolescence increases adult dopamine function, impulsivity, and aggression.

  • Deepika Suri‎ et al.
  • Molecular psychiatry‎
  • 2023‎

Sensitive developmental periods shape neural circuits and enable adaptation. However, they also engender vulnerability to factors that can perturb developmental trajectories. An understanding of sensitive period phenomena and mechanisms separate from sensory system development is still lacking, yet critical to understanding disease etiology and risk. The dopamine system is pivotal in controlling and shaping adolescent behaviors, and it undergoes heightened plasticity during that time, such that interference with dopamine signaling can have long-lasting behavioral consequences. Here we sought to gain mechanistic insight into this dopamine-sensitive period and its impact on behavior. In mice, dopamine transporter (DAT) blockade from postnatal (P) day 22 to 41 increases aggression and sensitivity to amphetamine (AMPH) behavioral stimulation in adulthood. Here, we refined this sensitive window to P32-41 and identified increased firing of dopaminergic neurons in vitro and in vivo as a neural correlate to altered adult behavior. Aggression can result from enhanced impulsivity and cognitive dysfunction, and dopamine regulates working memory and motivated behavior. Hence, we assessed these behavioral domains and found that P32-41 DAT blockade increases impulsivity but has no effect on cognition, working memory, or motivation in adulthood. Lastly, using optogenetics to drive dopamine neurons, we find that increased VTA but not SNc dopaminergic activity mimics the increase in impulsive behavior in the Go/NoGo task observed after adolescent DAT blockade. Together our data provide insight into the developmental origins of aggression and impulsivity that may ultimately improve diagnosis, prevention, and treatment strategies for related neuropsychiatric disorders.


Dopamine promotes aggression in mice via ventral tegmental area to lateral septum projections.

  • Darshini Mahadevia‎ et al.
  • Nature communications‎
  • 2021‎

Septal-hypothalamic neuronal activity centrally mediates aggressive behavior and dopamine system hyperactivity is associated with elevated aggression. However, the causal role of dopamine in aggression and its target circuit mechanisms are largely unknown. To address this knowledge gap, we studied the modulatory role of the population- and projection-specific dopamine function in a murine model of aggressive behavior. We find that terminal activity of ventral tegmental area (VTA) dopaminergic neurons selectively projecting to the lateral septum (LS) is sufficient for promoting aggression and necessary for establishing baseline aggression. Within the LS, dopamine acts on D2-receptors to inhibit GABAergic neurons, and septal D2-signaling is necessary for VTA dopaminergic activity to promote aggression. Collectively, our data reveal a powerful modulatory influence of dopaminergic synaptic input on LS function and aggression, effectively linking the clinically pertinent hyper-dopaminergic model of aggression with the classic septal-hypothalamic aggression axis.


Perinatal interference with the serotonergic system affects VTA function in the adult via glutamate co-transmission.

  • Catarina Cunha‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.


Hippocampal 5-HT Input Regulates Memory Formation and Schaffer Collateral Excitation.

  • Catia M Teixeira‎ et al.
  • Neuron‎
  • 2018‎

The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: