Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Combined Treatment with Exendin-4 and Metformin Attenuates Prostate Cancer Growth.

  • Yoko Tsutsumi‎ et al.
  • PloS one‎
  • 2015‎

Recently, the pleiotropic benefits of incretin-based therapy have been reported. We have previously reported that Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, attenuates prostate cancer growth. Metformin is known for its anti-cancer effect. Here, we examined the anti-cancer effect of Exendin-4 and metformin using a prostate cancer model.


Combined treatment with DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice.

  • Hiroyuki Takahashi‎ et al.
  • Biochemistry and biophysics reports‎
  • 2019‎

Incretin therapy has emerged as one of the most popular medications for type 2 diabetes. We have previously reported that the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin attenuates neointima formation after vascular injury in non-diabetic mice. In the present study, we examined whether combined treatment with linagliptin and the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin attenuates neointima formation in diabetic mice after vascular injury. Diabetic db/db mice were treated with 3 mg/kg/day linagliptin and/or 30 mg/kg/day empagliflozin from 5 to 10 weeks of age. Body weight was significantly decreased by empagliflozin and the combined treatment. Blood glucose levels and glucose tolerance test results were significantly improved by empagliflozin and the combined treatment, but not by linagliptin. An insulin tolerance test suggested that linagliptin and empagliflozin did not improve insulin sensitivity. In a model of guidewire-induced femoral artery injury in diabetic mice, neointima formation was significantly decreased in mice subjected to combined treatment. In an in vitro assay using rat aortic smooth muscle cells (RASMC), 100, 500, or 1000 nM empagliflozin significantly decreased the RASMC number in a dose-dependent manner. A further significant reduction in RASMC proliferation was observed after combined treatment with 10 nM linagliptin and 100 nM empagliflozin. These data suggest that combined treatment with the DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice in vivo and smooth muscle cell proliferation in vitro.


High-mobility group box 2 protein is essential for the early phase of adipogenesis.

  • Hidetaka Morinaga‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Understanding of the mechanism of adipogenesis is essential for the control of obesity, which predisposes toward numerous health problems. High-mobility group box protein 2 (HMGB2) is a non-histone chromosomal protein that facilitates DNA replication, transcription, recombination, and repair. Here, we studied the role of HMGB2 in adipogenic differentiation. The expression of HMGB2 was measured at the mRNA and protein levels in cultured 3T3-L1 pre-adipocyte cells and during the process of adipogenic differentiation induced bya cocktail of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone. This increased in the early phase and decreased in the late phase of differentiation. However, 3T3-L1 pre-adipocyte cells did not differentiate into adipocytes after the knockdown of HMGB2 expression by small interfering RNA (siRNA). Similarly, mesenchymal stem cells (MSCs) isolated from Hmgb2-/- mice did not express peroxisome proliferator-activated receptor gamma (PPARγ) in response to the adipocyte differentiation cocktail and did not differentiate. Wnt/β-catenin signaling is a negative regulator of adipogenic differentiation. We found that β-catenin expression was downregulated during 3T3-L1 adipogenic differentiation, as expected, but not when endogenous HMBG2 expression was knocked down using siRNA. These results indicate that HMGB2 plays an essential role in the early phase of the differentiation of pre-adipocytes and MSCs, and probably interacts with other regulators, such as PPARγ and Wnt/β-catenin signaling.


Dipeptidyl peptidase-4 inhibitor linagliptin attenuates neointima formation after vascular injury.

  • Yuichi Terawaki‎ et al.
  • Cardiovascular diabetology‎
  • 2014‎

Recently, glucagon-like peptide-1 (GLP-1)-based therapy, including dipeptidyl peptidase-4 (DPP-4) inhibitors and GLP-1 receptor agonists, has emerged as one of the most popular anti-diabetic therapies. Furthermore, GLP-1-based therapy has attracted increased attention not only for its glucose-lowering ability, but also for its potential as a tissue-protective therapy. In this study, we investigated the vascular-protective effect of the DPP-4 inhibitor, linagliptin, using vascular smooth muscle cells (VSMCs).


HMGA1a Induces Alternative Splicing of the Estrogen Receptor-αlpha Gene by Trapping U1 snRNP to an Upstream Pseudo-5' Splice Site.

  • Kenji Ohe‎ et al.
  • Frontiers in molecular biosciences‎
  • 2018‎

Objectives: The high-mobility group A protein 1a (HMGA1a) protein is known as a transcription factor that binds to DNA, but recent studies have shown it exerts novel functions through RNA-binding. We were prompted to decipher the mechanism of HMGA1a-induced alternative splicing of the estrogen receptor alpha (ERα) that we recently reported would alter tamoxifen sensitivity in MCF-7 TAMR1 cells. Methods: Endogenous expression of full length ERα66 and its isoform ERα46 were evaluated in MCF-7 breast cancer cells by transient expression of HMGA1a and an RNA decoy (2'-O-methylated RNA of the HMGA1a RNA-binding site) that binds to HMGA1a. RNA-binding of HMGA1a was checked by RNA-EMSA. In vitro splicing assay was performed to check the direct involvement of HMGA1a in splicing regulation. RNA-EMSA assay in the presence of purified U1 snRNP was performed with psoralen UV crosslinking to check complex formation of HMGA1a-U1 snRNP at the upstream pseudo-5' splice site of exon 1. Results: HMGA1a induced exon skipping of a shortened exon 1 of ERα in in vitro splicing assays that was blocked by the HMGA1a RNA decoy and sequence-specific RNA-binding was confirmed by RNA-EMSA. RNA-EMSA combined with psoralen UV crosslinking showed that HMGA1a trapped purified U1 snRNP at the upstream pseudo-5' splice site. Conclusions: Regulation of ERα alternative splicing by an HMGA1a-trapped U1 snRNP complex at the upstream 5' splice site of exon 1 offers novel insight on 5' splice site regulation by U1 snRNP as well as a promising target in breast cancer therapy where alternative splicing of ERα is involved.


Selective androgen receptor modulator, S42 has anabolic and anti-catabolic effects on cultured myotubes.

  • Yoshimi Muta‎ et al.
  • Biochemistry and biophysics reports‎
  • 2019‎

We previously identified a novel selective androgen receptor modulator, S42, that does not stimulate prostate growth but has a beneficial effect on lipid metabolism. S42 also increased muscle weight of the levator ani in orchiectomized Sprague-Dawley rats. These findings prompted us to investigate whether S42 has a direct effect on cultured C2C12 myotubes. S42 significantly lowered expression levels of the skeletal muscle ubiquitin ligase (muscle atrophy-related gene), atrogin1 and Muscle RING-Finger Protein 1(MuRF1) in C2C12 myotubes, as determined by real time PCR. Phosphorylation of p70 S6 kinase (p70S6K), an essential factor for promoting protein synthesis in skeletal muscle, was significantly increased by S42 to almost the same extent as by insulin, but this was significantly prevented by treatment with rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). However, phosphorylation of Akt, upstream regulator of mTORC1, was not changed by S42. S42 did not increase insulin-like growth factor 1 (Igf1) mRNA levels in C2C12 myotubes. These results suggest that S42 may have an anabolic effect through activation of mTORC1-p70S6K signaling, independent of IGF-1-Akt signaling and may exert an anti-catabolic effect through inhibition of the degradation pathway in cultured C2C12 myotubes.


Pemafibrate, a PPAR alpha agonist, attenuates neointima formation after vascular injury in mice fed normal chow and a high-fat diet.

  • Tsuyoshi Horikawa‎ et al.
  • Heliyon‎
  • 2020‎

Recently, the prevention of cardiovascular events has become one of the most important aims of diabetes care. Peroxisome proliferator-activated receptor (PPAR) agonists have been reported to have vascular protective effects. Here, we examined whether pemafibrate, a selective PPAR alpha agonist, attenuated neointima formation after vascular injury and vascular smooth muscle cell (VSMC) proliferation. We performed endothelial denudation injury in mice treated with a high-fat diet (HFD) or normal chow. Orally administered pemafibrate significantly attenuated neointima formation after vascular injury in HFD and normal chow mice. Interestingly, pemafibrate increased the serum fibroblast growth factor 21 concentration and decreased serum insulin concentrations in HFD mice. In addition, body weight was slightly but significantly decreased by pemafibrate in HFD mice. Pemafibrate, but not bezafibrate, attenuated VSMC proliferation in vitro. The knockdown of PPAR alpha abolished the anti-VSMC proliferation effect of pemafibrate. BrdU assay results revealed that pemafibrate dose-dependently inhibited DNA synthesis in VSMCs. Flow cytometry analysis demonstrated that G1-to-S phase cell cycle transition was significantly inhibited by pemafibrate. Pemafibrate attenuated serum-induced cyclin D1 expression in VSMCs. However, apoptosis was not induced by pemafibrate as assessed by the TUNEL assay. Similar to the in vitro data, VSMC proliferation was also decreased by pemafibrate in mice. These data suggest that pemafibrate attenuates neointima formation after vascular injury and VSMC proliferation by inhibiting cell cycle progression.


Activation of overexpressed glucagon-like peptide-1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression.

  • Toru Shigeoka‎ et al.
  • Journal of diabetes investigation‎
  • 2020‎

Incretin therapy is a common treatment for type 2 diabetes mellitus. We have previously reported an anti-prostate cancer effect of glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4. The attenuation of cell proliferation in the prostate cancer cell line was dependent on GLP-1R expression. Here, we examined the relationship between human prostate cancer severity and GLP-1R expression, as well as the effect of forced expression of GLP-1R using a lentiviral vector.


Prescription of oral hypoglycemic agents for patients with type 2 diabetes mellitus: A retrospective cohort study using a Japanese hospital database.

  • Makito Tanabe‎ et al.
  • Journal of diabetes investigation‎
  • 2017‎

In treatment algorithms of type 2 diabetes mellitus in Western countries, biguanides are recommended as first-line agents. In Japan, various oral hypoglycemic agents (OHAs) are available, but prescription patterns are unclear.


GLP-1 Receptor Agonist Exendin-4 Attenuates NR4A Orphan Nuclear Receptor NOR1 Expression in Vascular Smooth Muscle Cells.

  • Hiroyuki Takahashi‎ et al.
  • Journal of atherosclerosis and thrombosis‎
  • 2019‎

Recently, incretin therapy has attracted increasing attention because of its potential use in tissue-protective therapy. Neuron-derived orphan receptor 1 (NOR1) is a nuclear orphan receptor that regulates vascular smooth muscle cell (VSMC) proliferation. In the present study, we investigated the vascular-protective effect of Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, by inhibiting NOR1 expression in VSMCs.


Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation.

  • Chikayo Iwaya‎ et al.
  • Endocrinology‎
  • 2017‎

Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: