Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Adverse experience during early life and adulthood interact to elevate tph2 mRNA expression in serotonergic neurons within the dorsal raphe nucleus.

  • K L Gardner‎ et al.
  • Neuroscience‎
  • 2009‎

Anxiety disorders, depression and animal models of vulnerability to a depression-like syndrome have been associated with dysregulation of brain serotonergic systems. These effects could result from genetic influences, adverse early life experiences (ELE), or acute stressful life events, all of which can alter serotonergic neurotransmission and have been implicated in determining vulnerability to neuropsychiatric disorders. To evaluate the effects of ELE, adverse experiences during adulthood, and potential interactions between these factors on neuronal tryptophan hydroxylase 2 (tph2) mRNA expression, we investigated in rats the effects of maternal separation (MS)(separation from the dam for 180 min/day from postnatal day 2-14; MS180, a model of vulnerability to a depression-like syndrome), neonatal handling (separation from the dam for 15 min/day from postnatal day 2-14; MS15, a model of decreased stress sensitivity), or normal animal facility rearing (AFR) control conditions, with or without subsequent exposure to adult social defeat, on tph2 mRNA expression in the dorsal raphe nucleus (DR). Among rats exposed to social defeat, MS180 rats had increased tph2 mRNA expression in the DR, while MS15 rats had decreased tph2 mRNA expression compared to AFR rats. Social defeat increased tph2 mRNA expression, but only in MS180 rats and only in the "lateral wings" of the DR, a subdivision of the DR that is part of a sympathomotor command center. Overall, these data demonstrate that ELE and stressful experience during adulthood interact to determine tph2 mRNA expression. These changes in tph2 mRNA expression represent a potential mechanism through which adverse ELEs and stressful life experiences during adulthood may interact to increase vulnerability to stress-related psychiatric disease.


Stimulatory, but not anxiogenic, doses of caffeine act centrally to activate interscapular brown adipose tissue thermogenesis in anesthetized male rats.

  • L Van Schaik‎ et al.
  • Scientific reports‎
  • 2021‎

The role of central orexin in the sympathetic control of interscapular brown adipose tissue (iBAT) thermogenesis has been established in rodents. Stimulatory doses of caffeine activate orexin positive neurons in the lateral hypothalamus, a region of the brain implicated in stimulating BAT thermogenesis. This study tests the hypothesis that central administration of caffeine is sufficient to activate BAT. Low doses of caffeine administered either systemically (intravenous [IV]; 10 mg/kg) and centrally (intracerebroventricular [ICV]; 5-10 μg) increases BAT thermogenesis, in anaesthetised (1.5 g/kg urethane, IV) free breathing male rats. Cardiovascular function was monitored via an indwelling intra-arterial cannula and exhibited no response to the caffeine. Core temperature did not significantly differ after administration of caffeine via either route of administration. Caffeine administered both IV and ICV increased neuronal activity, as measured by c-Fos-immunoreactivity within subregions of the hypothalamic area, previously implicated in regulating BAT thermogenesis. Significantly, there appears to be no neural anxiety response to the low dose of caffeine as indicated by no change in activity in the basolateral amygdala. Having measured the physiological correlate of thermogenesis (heat production) we have not measured indirect molecular correlates of BAT activation. Nevertheless, our results demonstrate that caffeine, at stimulatory doses, acting via the central nervous system can increase thermogenesis, without adverse cardio-dynamic impact.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: