Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

The Familial dementia gene ITM2b/BRI2 facilitates glutamate transmission via both presynaptic and postsynaptic mechanisms.

  • Wen Yao‎ et al.
  • Scientific reports‎
  • 2019‎

Mutations in the Integral membrane protein 2B (ITM2b/BRI2) gene, which codes for a protein called BRI2, cause familial British and Danish dementia (FBD and FDD). Loss of BRI2 function and/or accumulation of amyloidogenic mutant BRI2-derived peptides have been proposed to mediate FDD and FBD pathogenesis by impairing synaptic Long-term potentiation (LTP). However, the precise site and nature of the synaptic dysfunction remain unknown. Here we use a genetic approach to inactivate Itm2b in either presynaptic (CA3), postsynaptic (CA1) or both (CA3 + CA1) neurons of the hippocampal Schaeffer-collateral pathway in both female and male mice. We show that after CA3 + CA1 Itm2b inactivation, spontaneous glutamate release and AMPAR-mediated responses are decreased, while short-term synaptic facilitation is increased. Moreover, AMPAR-mediated responses are decreased after postsynaptic but not presynaptic deletion of Itm2b. In contrast, the probability of spontaneous glutamate release is decreased, while short-term synaptic facilitation is increased, primarily after presynaptic deletion of Itm2b. Collectively, these results indicate a dual physiological role of Itm2b in the regulation of excitatory synaptic transmission at both presynaptic termini and postsynaptic termini and suggest that presynaptic and postsynaptic dysfunctions may be a pathogenic event leading to dementia and neurodegeneration in FDD and FBD.


Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer's Disease-like traits in vivo.

  • Luca Giliberto‎ et al.
  • PloS one‎
  • 2010‎

Regulated intramembranous proteolysis of the amyloid-beta precursor protein by the gamma-secretase yields amyloid-beta, which is the major component of the amyloid plaques found in Alzheimer's disease (AD), and the APP intracellular domain (AID). In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription.


CD74 interacts with APP and suppresses the production of Abeta.

  • Shuji Matsuda‎ et al.
  • Molecular neurodegeneration‎
  • 2009‎

Alzheimer disease (AD) is characterized by senile plaques, which are mainly composed of beta amyloid (Abeta) peptides. Abeta is cleaved off from amyloid precursor protein (APP) with consecutive proteolytic processing by beta-secretase and gamma-secretase.


Maturation of BRI2 generates a specific inhibitor that reduces APP processing at the plasma membrane and in endocytic vesicles.

  • Shuji Matsuda‎ et al.
  • Neurobiology of aging‎
  • 2011‎

Processing of the amyloid-β (Aβ) precursor protein (APP) has been extensively studied since it leads to production of Aβ peptides. Toxic forms of Aβ aggregates are considered the cause of Alzheimer's disease (AD). On the other end, BRI2 is implicated in APP processing and Aβ production. We have investigated the precise mechanism by which BRI2 modulates APP cleavages and have found that BRI2 forms a mature BRI2 polypeptide that is transported to the plasma membrane and endosomes where it interacts with mature APP. Notably, immature forms of APP and BRI2 fail to interact. Mature BRI2 inhibits APP processing by α-, β- and γ-secretases on the plasma membrane and in endocytic compartments. Thus, BRI2 is a specific inhibitor that reduces secretases' access to APP in the intracellular compartments where APP is normally processed.


Evidence that the Amyloid beta Precursor Protein-intracellular domain lowers the stress threshold of neurons and has a "regulated" transcriptional role.

  • Luca Giliberto‎ et al.
  • Molecular neurodegeneration‎
  • 2008‎

Regulated intramembrane proteolysis of the beta-amyloid precursor protein by the gamma-secretase yields two peptides. One, amyloid-beta, is the major component of the amyloid plaques found in Alzheimer's disease patients. The other, APP IntraCellular Domain, has been involved in regulation of apoptosis, calcium flux and gene transcription. To date, a few potential target genes transcriptionally controlled by AID, alone or complexed with Fe65/Tip60, have been described. Although the reports are controversial: these include KAI1, Neprilysin, p53, EGFR, LRP and APP itself. Furthermore, p53 has been implicated in AID mediated susceptibility to apoptosis. To extend these findings, and assess their in vivo relevance, we have analyzed the expression of the putative target genes and of the total brain basal transriptoma in transgenic mice expressing AID in the forebrain. Also, we have studied the susceptibility of primary neurons from such mice to stress and pro-apoptotic agents.


A role for tau in learning, memory and synaptic plasticity.

  • Fabrizio Biundo‎ et al.
  • Scientific reports‎
  • 2018‎

Tau plays a pivotal role in the pathogenesis of neurodegenerative disorders: mutations in the gene encoding for tau (MAPT) are linked to Fronto-temporal Dementia (FTD) and hyper-phosphorylated aggregates of tau forming neurofibrillary tangles (NFTs) that constitute a pathological hallmark of Alzheimer disease (AD) and FTD. Accordingly, tau is a favored therapeutic target for the treatment of these diseases. Given the criticality of tau to dementia's pathogenesis and therapy, it is important to understand the physiological function of tau in the central nervous system. Analysis of Mapt knock out (Mapt-/-) mice has yielded inconsistent results. Some studies have shown that tau deletion does not alter memory while others have described synaptic plasticity and memory alterations in Mapt-/- mice. To help clarifying these contrasting results, we analyzed a distinct Mapt-/- model on a B6129PF3/J genetic background. We found that tau deletion leads to aging-dependent short-term memory deficits, hyperactivity and synaptic plasticity defects. In contrast, Mapt+/- mice only showed a mild short memory deficit in the novel object recognition task. Thus, while tau is important for normal neuronal functions underlying learning and memory, partial reduction of tau expression may have fractional deleterious effects.


Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase-mTORC1 Translational Pathway.

  • Charlotte C Bavley‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

A homozygous nonsense mutation in the cereblon (CRBN) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out (CrbnKO) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and CrbnKO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that CrbnKO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult CrbnKO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, CrbnKO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory.SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon (CRBN) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an intelligence quotient between 50 and 70 but devoid of other phenotypic features, making cereblon an ideal protein for the study of the fundamental aspects of learning and memory. Here, using the cereblon knock-out mouse model, we show that cereblon deficiency disrupts learning, memory, and synaptic function via AMP-activated protein kinase hyperactivity, downregulation of mTORC1, and dysregulation of excitatory synapses, with no changes in social or repetitive behaviors, consistent with findings in the human population. This establishes the cereblon knock-out mouse as a model of pure ID without the confounding behavioral phenotypes associated with other current models of ID.


Knock-in rats with homozygous PSEN1L435F Alzheimer mutation are viable and show selective γ-secretase activity loss causing low Aβ40/42 and high Aβ43.

  • Marc D Tambini‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Familial forms of Alzheimer's disease (FAD) are caused by mutations in the gene encoding amyloid precursor protein, whose processing can result in formation of β-amyloid (Aβ). FAD can also result from mutations in the presenilin 1/2 (PSEN1/2) genes, whose protein products partially compose the γ-secretase complex that cleaves Aβ from amyloid precursor protein fragments. Psen1 KO mice and knock-in (KI) mice with homozygous FAD-associated L435F mutations (Psen1LF/LF ) are embryonic and perinatally lethal, precluding a more rigorous examination of the effect of Alzheimer's disease-causing Psen1 mutations on neurodegeneration. Given that the rat is a more suitable model organism with regard to surgical interventions and behavioral testing, we generated a rat KI model of the Psen1LF mutation. In this study, we focused on young Psen1LF rats to determine potential early pathogenic changes caused by this mutation. We found that, unlike Psen1LF/LF mice, Psen1LF/LF rats survive into adulthood despite loss of γ-secretase activity. Consistent with loss of γ-secretase function, Psen1LF/LF rats exhibited low levels of Aβ38, Aβ40, and Aβ42 peptides. In contrast, levels of Aβ43, a longer and potentially more amyloidogenic Aβ form, were significantly increased in Psen1LF/LF and Psen1LF/w rats. The longer survival of these KI rats affords the opportunity to examine the effect of homozygous Psen1 Alzheimer's disease-associated mutations on neurodegeneration in older animals.


Opposite changes in APP processing and human Aβ levels in rats carrying either a protective or a pathogenic APP mutation.

  • Marc D Tambini‎ et al.
  • eLife‎
  • 2020‎

Cleavage of APP by BACE1/β-secretase initiates the amyloidogenic cascade leading to Amyloid-β (Aβ) production. α-Secretase initiates the non-amyloidogenic pathway preventing Aβ production. Several APP mutations cause familial Alzheimer's disease (AD), while the Icelandic APP mutation near the BACE1-cleavage site protects from sporadic dementia, emphasizing APP's role in dementia pathogenesis. To study APP protective/pathogenic mechanisms, we generated knock-in rats carrying either the protective (Appp) or the pathogenic Swedish mutation (Apps), also located near the BACE1-cleavage site. α-Cleavage is favored over β-processing in Appp rats. Consequently, non-amyloidogenic and amyloidogenic APP metabolites are increased and decreased, respectively. The reverse APP processing shift occurs in Apps rats. These opposite effects on APP β/α-processing suggest that protection from and pathogenesis of dementia depend upon combinatorial and opposite alterations in APP metabolism rather than simply on Aβ levels. The Icelandic mutation also protects from aging-dependent cognitive decline, suggesting that similar mechanisms underlie physiological cognitive aging.


BRI2-mediated regulation of TREM2 processing in microglia and its potential implications for Alzheimer's disease and related dementias.

  • Tao Yin‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

ITM2B/BRI2 mutations cause familial forms of Alzheimer's disease (AD)-related dementias by disrupting BRI2's protein function and leading to the accumulation of amyloidogenic peptides. Although typically studied in neurons, our findings show that BRI2 is highly expressed in microglia, which are crucial in AD pathogenesis due to the association of variants in the microglial gene TREM2 with increased AD risk. Our single-cell RNAseq (scRNAseq) analysis revealed a microglia cluster that depends on a Trem2 activity that is inhibited by Bri2, pointing to a functional interaction between Itm2b/Bri2 and Trem2. Given that the AD-related Amyloid-β Precursor protein (APP) and TREM2 undergo similar proteolytic processing, and that BRI2 inhibits APP processing, we hypothesized that BRI2 may also regulate TREM2 processing. We found that BRI2 interacts with Trem2 and inhibits its processing by α-secretase in transfected cells. In mice lacking Bri2 expression, we observed increased central nervous system (CNS) levels of Trem2-CTF and sTrem2, which are the products of α-secretase processing of Trem2, indicating increased Trem2 processing by α-secretase in vivo. Reducing Bri2 expression only in microglia resulted in increased sTrem2 levels, suggesting a cell-autonomous effect of Bri2 on α-secretase processing of Trem2. Our study reveals a previously unknow role of BRI2 in regulating TREM2-related neurodegenerative mechanisms. The ability of BRI2 to regulate the processing of both APP and TREM2, combined with its cell-autonomous role in neurons and microglia, makes it a promising candidate for the development of AD and AD-related dementias therapeutics.


Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade.

  • Erica Acquarone‎ et al.
  • Molecular neurodegeneration‎
  • 2019‎

Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown.


Facilitation of glutamate, but not GABA, release in Familial Alzheimer's APP mutant Knock-in rats with increased β-cleavage of APP.

  • Marc D Tambini‎ et al.
  • Aging cell‎
  • 2019‎

Amyloid precursor protein (APP) modulates glutamate release via cytoplasmic and intravesicular interactions with the synaptic vesicle release machinery. The intravesicular domain, called ISVAID, contains the BACE1 cleavage site of APP. We have tested the functional significance of BACE1 processing of APP using App-Swedish (Apps ) knock-in rats, which carry an App mutation that causes familial Alzheimer's disease (FAD) in humans. We show that in Apps rats, β-cleavage of APP is favored over α-cleavage. Apps rats show facilitated glutamate, but not GABA, release. Our data support the notion that APP tunes glutamate release, and that BACE1 cleavage of the ISVAID segment of APP facilitates this function. We define this phenomenon as BACE1 on APP-dependent glutamate release (BAD-Glu). Unsurprisingly, Apps rats show no evidence of AD-related pathology at 15 days and 3 months of age, indicating that alterations in BAD-Glu are not caused by pathological lesions. The evidence that a pathogenic APP mutation causes an early enhancement of BAD-Glu suggests that alterations of BACE1 processing of APP in glutamatergic synaptic vesicles could contribute to dementia.


APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses.

  • Tomas Fanutza‎ et al.
  • eLife‎
  • 2015‎

The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.


APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions.

  • Dolores Del Prete‎ et al.
  • PloS one‎
  • 2014‎

Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.


LTP and memory impairment caused by extracellular Aβ and Tau oligomers is APP-dependent.

  • Daniela Puzzo‎ et al.
  • eLife‎
  • 2017‎

The concurrent application of subtoxic doses of soluble oligomeric forms of human amyloid-beta (oAβ) and Tau (oTau) proteins impairs memory and its electrophysiological surrogate long-term potentiation (LTP), effects that may be mediated by intra-neuronal oligomers uptake. Intrigued by these findings, we investigated whether oAβ and oTau share a common mechanism when they impair memory and LTP in mice. We found that as already shown for oAβ, also oTau can bind to amyloid precursor protein (APP). Moreover, efficient intra-neuronal uptake of oAβ and oTau requires expression of APP. Finally, the toxic effect of both extracellular oAβ and oTau on memory and LTP is dependent upon APP since APP-KO mice were resistant to oAβ- and oTau-induced defects in spatial/associative memory and LTP. Thus, APP might serve as a common therapeutic target against Alzheimer's Disease (AD) and a host of other neurodegenerative diseases characterized by abnormal levels of Aβ and/or Tau.


Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 inhibition provides therapeutic protection.

  • Robert Tamayev‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Mutations in either Aβ Precursor protein (APP) or genes that regulate APP processing, such as BRI2/ITM2B and PSEN1/PSEN2, cause familial dementias. Although dementias due to APP/PSEN1/PSEN2 mutations are classified as familial Alzheimer disease (FAD) and those due to mutations in BRI2/ITM2B as British and Danish dementias (FBD, FDD), data suggest that these diseases have a common pathogenesis involving toxic APP metabolites. It was previously shown that FAD mutations in APP and PSENs promote activation of caspases leading to the hypothesis that aberrant caspase activation could participate in AD pathogenesis.


Proteomic characterization of a mouse model of familial Danish dementia.

  • Monica Vitale‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2012‎

A dominant mutation in the ITM2B/BRI2 gene causes familial Danish dementia (FDD) in humans. To model FDD in animal systems, a knock-in approach was recently implemented in mice expressing a wild-type and mutant allele, which bears the FDD-associated mutation. Since these FDD(KI) mice show behavioural alterations and impaired synaptic function, we characterized their synaptosomal proteome via two-dimensional differential in-gel electrophoresis. After identification by nanoliquid chromatography coupled to electrospray-linear ion trap tandem mass spectrometry, the differentially expressed proteins were classified according to their gene ontology descriptions and their predicted functional interactions. The Dlg4/Psd95 scaffold protein and additional signalling proteins, including protein phosphatases, were revealed by STRING analysis as potential players in the altered synaptic function of FDD(KI) mice. Immunoblotting analysis finally demonstrated the actual downregulation of the synaptosomal scaffold protein Dlg4/Psd95 and of the dual-specificity phosphatase Dusp3 in the synaptosomes of FDD(KI) mice.


TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer's disease pathology in young Trem2R47H rats.

  • Siqiang Ren‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Alzheimer's disease (AD) is a neurodegenerative dementia associated with deposition of amyloid plaques and neurofibrillary tangles, formed by amyloid β (Aβ) peptides and phosphor-tau, respectively, in the central nervous system. Approximately 2% of AD cases are due to familial AD (FAD); ∼98% of cases are sporadic AD (SAD). Animal models with FAD are commonly used to study SAD pathogenesis. Because mechanisms leading to FAD and SAD may be distinct, to study SAD pathogenesis, we generated Trem2R47H knock-in rats, which carry the SAD risk factor p.R47H variant of the microglia gene triggering receptor expressed on myeloid cells 2 (TREM2). Trem2R47H rats produce human-Aβ from a humanized-App rat allele because human-Aβ is more toxic than rodent-Aβ and the pathogenic role of the p.R47H TREM2 variant has been linked to human-Aβ-clearing deficits. Using periadolescent Trem2R47H rats, we previously demonstrated that supraphysiological tumor necrosis factor-α (TNF-α) boosts glutamatergic transmission, which is excitatory, and suppresses long-term potentiation, a surrogate of learning and memory. Here, we tested the effect of the p.R47H variant on the inhibitory neurotransmitter γ-aminobutyric acid. We report that GABAergic transmission is decreased in Trem2R47H/R47H rats. This decrease is due to acute and reversible action of TNF-α and is not associated with increased human-Aβ levels and AD pathology. Thus, the p.R47H variant changes the excitatory/inhibitory balance, favoring excitation. This imbalance could potentiate glutamate excitotoxicity and contribute to neuronal dysfunction, enhanced neuronal death, and neurodegeneration. Future studies will determine whether this imbalance represents an early, Aβ-independent pathway leading to dementia and may reveal the AD-modifying therapeutic potential of TNF-α inhibition in the central nervous system.


Aβ43 levels determine the onset of pathological amyloid deposition.

  • Marc D Tambini‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

About 2% of Alzheimer's disease (AD) cases have early onset (FAD) and are caused by mutations in either Presenilins (PSEN1/2) or amyloid-β precursor protein (APP). PSEN1/2 catalyze production of Aβ peptides of different length from APP. Aβ peptides are the major components of amyloid plaques, a pathological lesion that characterizes AD. Analysis of mechanisms by which PSEN1/2 and APP mutations affect Aβ peptide compositions lead to the implication of the absolute or relative increase in Aβ42 in amyloid-β plaques formation. Here, to elucidate the formation of pathogenic Aβ cocktails leading to amyloid pathology, we utilized FAD rat knock-in models carrying the Swedish APP (Apps allele) and the PSEN1 L435F (Psen1LF allele) mutations. To accommodate the differences in the pathogenicity of rodent and human Aβ, these rat models are genetically engineered to express human Aβ species as both the Swedish mutant allele and the WT rat allele (called Apph) have been humanized in the Aβ-coding region. Analysis of the eight possible FAD mutant permutations indicates that the CNS levels of Aβ43, rather than absolute or relative increases in Aβ42, determine the onset of pathological amyloid deposition in FAD knock-in rats. Notably, Aβ43 was found in amyloid plaques in late onset AD and mild cognitive impairment cases, suggesting that the mechanisms initiating amyloid pathology in FAD knock-in rat reflect disease mechanisms driving amyloid pathology in late onset AD. This study helps clarifying the molecular determinants initiating amyloid pathology and supports therapeutic interventions targeting Aβ43 in AD.


Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia.

  • Fabrizio Biundo‎ et al.
  • Oncotarget‎
  • 2016‎

Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite -ß-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI.We have investigated further the pathogenic function of ß-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves ß-CTF, results in stabilization of ß-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: