Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Clinical relevance of serum antibodies to extracellular N-methyl-D-aspartate receptor epitopes.

  • Michael S Zandi‎ et al.
  • Journal of neurology, neurosurgery, and psychiatry‎
  • 2015‎

There are now a large number of requests for N-methyl-D-aspartate receptor autoantibody (NMDAR-Ab) tests, and it is important to assess the clinical relevance of all results, particularly when they are reported as 'Low Positive'.


Autoantibodies to the N-Methyl-D-Aspartate Receptor in Adolescents With Early Onset Psychosis and Healthy Controls.

  • Kristine Engen‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

Autoantibodies to the N-methyl-D-aspartate receptor (NMDAR-Abs) in autoimmune encephalitis have been associated with prominent psychiatric symptoms. The aims of the present study are to identify the prevalence of NMDAR-Abs in adolescents with early onset psychosis disorders (EOP) and healthy controls (HC) and examine its clinical significance.


Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis.

  • Thomas A Pollak‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Serum neuronal autoantibodies, such as those to the NMDA receptor (NMDAR), are detectable in a subgroup of patients with psychotic disorders. It is not known if they are present before the onset of psychosis or whether they are associated with particular clinical features or outcomes. In a case-control study, sera from 254 subjects at clinical high risk (CHR) for psychosis and 116 healthy volunteers were tested for antibodies against multiple neuronal antigens implicated in CNS autoimmune disorders, using fixed and live cell-based assays (CBAs). Within the CHR group, the relationship between NMDAR antibodies and symptoms, cognitive function and clinical outcomes over 24 month follow-up was examined. CHR subjects were not more frequently seropositive for neuronal autoantibodies than controls (8.3% vs. 5.2%; OR = 1.50; 95% CI: 0.58-3.90). The NMDAR was the most common target antigen and NMDAR IgGs were more sensitively detected with live versus fixed CBAs (p < 0.001). Preliminary phenotypic analyses revealed that within the CHR sample, the NMDAR antibody seropositive subjects had higher levels of current depression, performed worse on the Rey Auditory Verbal Learning Task (p < 0.05), and had a markedly lower IQ (p < 0.01). NMDAR IgGs were not more frequent in subjects who later became psychotic than those who did not. NMDAR antibody serostatus and titre was associated with poorer levels of functioning at follow-up (p < 0.05) and the presence of a neuronal autoantibody was associated with larger amygdala volumes (p < 0.05). Altogether, these findings demonstrate that NMDAR autoantibodies are detectable in a subgroup of CHR subjects at equal rates to controls. In the CHR group, they are associated with affective psychopathology, impairments in verbal memory, and overall cognitive function: these findings are qualitatively and individually similar to core features of autoimmune encephalitis and/or animal models of NMDAR antibody-mediated CNS disease. Overall the current work supports further evaluation of NMDAR autoantibodies as a possible prognostic biomarker and aetiological factor in a subset of people already meeting CHR criteria.


Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis.

  • Sukhvir K Wright‎ et al.
  • Communications biology‎
  • 2021‎

Seizures are a prominent feature in N-Methyl-D-Aspartate receptor antibody (NMDAR antibody) encephalitis, a distinct neuro-immunological disorder in which specific human autoantibodies bind and crosslink the surface of NMDAR proteins thereby causing internalization and a state of NMDAR hypofunction. To further understand ictogenesis in this disorder, and to test a potential treatment compound, we developed an NMDAR antibody mediated rat seizure model that displays spontaneous epileptiform activity in vivo and in vitro. Using a combination of electrophysiological and dynamic causal modelling techniques we show that, contrary to expectation, reduction of synaptic excitatory, but not inhibitory, neurotransmission underlies the ictal events through alterations in the dynamical behaviour of microcircuits in brain tissue. Moreover, in vitro application of a neurosteroid, pregnenolone sulphate, that upregulates NMDARs, reduced established ictal activity. This proof-of-concept study highlights the complexity of circuit disturbances that may lead to seizures and the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.


Compromised fidelity of B-cell tolerance checkpoints in AChR and MuSK myasthenia gravis.

  • Jae-Yun Lee‎ et al.
  • Annals of clinical and translational neurology‎
  • 2016‎

Myasthenia gravis (MG) is an autoimmune condition in which neurotransmission is impaired by binding of autoantibodies to acetylcholine receptors (AChR) or, in a minority of patients, to muscle specific kinase (MuSK). There are differences in the dominant IgG subclass, pathogenic mechanisms, and treatment responses between the two MG subtypes (AChR or MuSK). The antibodies are thought to be T-cell dependent, but the mechanisms underlying their production are not well understood. One aspect not previously described is whether defects in central and peripheral tolerance checkpoints, which allow autoreactive B cells to accumulate in the naive repertoire, are found in both or either form of MG.


Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients.

  • Kazushiro Takata‎ et al.
  • JCI insight‎
  • 2019‎

Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by muscle weakness and caused by pathogenic autoantibodies that bind to membrane proteins at the neuromuscular junction. Most patients have autoantibodies against the acetylcholine receptor (AChR), but a subset of patients have autoantibodies against muscle-specific tyrosine kinase (MuSK) instead. MuSK is an essential component of the pathway responsible for synaptic differentiation, which is activated by nerve-released agrin. Through binding MuSK, serum-derived autoantibodies inhibit agrin-induced MuSK autophosphorylation, impair clustering of AChRs, and block neuromuscular transmission. We sought to establish individual MuSK autoantibody clones so that the autoimmune mechanisms could be better understood. We isolated MuSK autoantibody-expressing B cells from 6 MuSK MG patients using a fluorescently tagged MuSK antigen multimer, then generated a panel of human monoclonal autoantibodies (mAbs) from these cells. Here we focused on 3 highly specific mAbs that bound quantitatively to MuSK in solution, to MuSK-expressing HEK cells, and at mouse neuromuscular junctions, where they colocalized with AChRs. These 3 IgG isotype mAbs (2 IgG4 and 1 IgG3 subclass) recognized the Ig-like domain 2 of MuSK. The mAbs inhibited AChR clustering, but intriguingly, they enhanced rather than inhibited MuSK phosphorylation, which suggests an alternative mechanism for inhibiting AChR clustering.


Persistent microglial activation and synaptic loss with behavioral abnormalities in mouse offspring exposed to CASPR2-antibodies in utero.

  • Ester Coutinho‎ et al.
  • Acta neuropathologica‎
  • 2017‎

Gestational transfer of maternal antibodies against fetal neuronal proteins may be relevant to some neurodevelopmental disorders, but until recently there were no proteins identified. We recently reported a fivefold increase in CASPR2-antibodies in mid-gestation sera from mothers of children with intellectual and motor disabilities. Here, we exposed mice in utero to purified IgG from patients with CASPR2-antibodies (CASPR2-IgGs) or from healthy controls (HC-IgGs). CASPR2-IgG but not HC-IgG bound to fetal brain parenchyma, from which CASPR2-antibodies could be eluted. CASPR2-IgG exposed neonates achieved milestones similarly to HC-IgG exposed controls but, when adult, the CASPR2-IgG exposed progeny showed marked social interaction deficits, abnormally located glutamatergic neurons in layers V-VI of the somatosensory cortex, a 16% increase in activated microglia, and a 15-52% decrease in glutamatergic synapses in layers of the prefrontal and somatosensory cortices. Thus, in utero exposure to CASPR2-antibodies led to permanent behavioral, cellular, and synaptic abnormalities. These findings support a pathogenic role for maternal antibodies in human neurodevelopmental conditions, and CASPR2 as a potential target.


Cell- and Single Molecule-Based Methods to Detect Anti-N-Methyl-D-Aspartate Receptor Autoantibodies in Patients With First-Episode Psychosis From the OPTiMiSE Project.

  • Julie Jézéquel‎ et al.
  • Biological psychiatry‎
  • 2017‎

Circulating autoantibodies against glutamatergic N-methyl-D-aspartate receptor (NMDAR) have been reported in a proportion of patients with psychotic disorders, raising hopes for more appropriate treatment for these antibody-positive patients. However, the prevalence of circulating autoantibodies against glutamatergic NMDAR in psychotic disorders remains controversial, with detection prevalence rates and immunoglobulin classes varying considerably between studies, perhaps because of different detection methods. Here, we compared the results of serum assays for a large cohort of patients with first-episode psychosis using classical cell-based assays in three labs and a single molecule-based imaging method. Most assays and single molecule imaging in live hippocampal neurons revealed the presence of circulating autoantibodies against glutamatergic NMDAR in approximately 5% of patients with first-episode psychosis. However, some heterogeneity between cell-based assays was clearly observed, highlighting the urgent need for new sensitive methods to detect the presence of low-titer autoantibodies against glutamatergic NMDAR in seropositive patients who cannot be clinically identified from seronegative ones.


Neuronal antibodies in pediatric epilepsy: Clinical features and long-term outcomes of a historical cohort not treated with immunotherapy.

  • Sukhvir Wright‎ et al.
  • Epilepsia‎
  • 2016‎

In autoimmune encephalitis the etiologic role of neuronal cell-surface antibodies is clear; patients diagnosed and treated early have better outcomes. Neuronal antibodies have also been described in patients with pediatric epilepsy without encephalitis. The aim was to assess whether antibody presence had any effect on long-term outcomes in these patients.


Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability.

  • John M Dawes‎ et al.
  • Neuron‎
  • 2018‎

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.


IgG-specific cell-based assay detects potentially pathogenic MuSK-Abs in seronegative MG.

  • Saif Huda‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2017‎

To increase the detection of MuSK-Abs using a CBA and test their pathogenicity.


Glycine receptor autoantibodies disrupt inhibitory neurotransmission.

  • Sarah J Crisp‎ et al.
  • Brain : a journal of neurology‎
  • 2019‎

Chloride-permeable glycine receptors have an important role in fast inhibitory neurotransmission in the spinal cord and brainstem. Human immunoglobulin G (IgG) autoantibodies to glycine receptors are found in a substantial proportion of patients with progressive encephalomyelitis with rigidity and myoclonus, and less frequently in other variants of stiff person syndrome. Demonstrating a pathogenic role of glycine receptor autoantibodies would help justify the use of immunomodulatory therapies and provide insight into the mechanisms involved. Here, purified IgGs from four patients with progressive encephalomyelitis with rigidity and myoclonus or stiff person syndrome, and glycine receptor autoantibodies, were observed to disrupt profoundly glycinergic neurotransmission. In whole-cell patch clamp recordings from cultured rat spinal motor neurons, glycinergic synaptic currents were almost completely abolished following incubation in patient IgGs. Most human autoantibodies targeting other CNS neurotransmitter receptors, such as N-methyl-d-aspartate (NMDA) receptors, affect whole cell currents only after several hours incubation and this effect has been shown to be the result of antibody-mediated crosslinking and internalization of receptors. By contrast, we observed substantial reductions in glycinergic currents with all four patient IgG preparations with 15 min of exposure to patient IgGs. Moreover, monovalent Fab fragments generated from the purified IgG of three of four patients also profoundly reduced glycinergic currents compared with control Fab-IgG. We conclude that human glycine receptor autoantibodies disrupt glycinergic neurotransmission, and also suggest that the pathogenic mechanisms include direct antagonistic actions on glycine receptors.


Inhibition of Maternal-to-Fetal Transfer of IgG Antibodies by FcRn Blockade in a Mouse Model of Arthrogryposis Multiplex Congenita.

  • Ester Coutinho‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2021‎

To determine whether blocking the neonatal Fc receptor (FcRn) during gestation with an anti-FcRn monoclonal antibody (mAb) reduces transfer of pathogenic maternal antibodies in utero and decreases the likelihood of maternal antibody-mediated neonatal disease in the offspring.


Relationship Between Serum NMDA Receptor Antibodies and Response to Antipsychotic Treatment in First-Episode Psychosis.

  • Thomas A Pollak‎ et al.
  • Biological psychiatry‎
  • 2021‎

When psychosis develops in NMDA receptor (NMDAR) antibody encephalitis, it usually has an acute or subacute onset, and antipsychotic treatment may be ineffective and associated with adverse effects. Serum NMDAR antibodies have been reported in a minority of patients with first-episode psychosis (FEP), but their role in psychosis onset and response to antipsychotic treatment is unclear.


Screening for pathogenic neuronal autoantibodies in serum and CSF of patients with first-episode psychosis.

  • Jakob Theorell‎ et al.
  • Translational psychiatry‎
  • 2021‎

Patients with autoimmune encephalitides, especially those with antibodies to the N-methyl-D-aspartate receptor (NMDAR), often present with prominent psychosis and respond well to immunotherapies. Although most patients progress to develop various neurological symptoms, it has been hypothesised that a subgroup of patients with first-episode psychosis (FEP) suffer from a forme fruste of autoimmune encephalitis. Without accurate identification, this immunotherapy-responsive subgroup may be denied disease-modifying treatments. Thirty studies addressing aspects of this hypothesis were identified in a systematic review. Amongst other shortcomings, 15/30 reported no control group and only 6/30 determined cerebrospinal fluid (CSF) autoantibodies. To ourselves address these-and other-limitations, we investigated a prospectively ascertained clinically well-characterised cohort of 71 FEP patients without traditional neurological features, and 48 healthy controls. Serum and CSF were tested for autoantibodies against seven neuronal surface autoantigens using live cell-based assays. These identified 3/71 (4%) patient sera with weak binding to either contactin-associated protein-like 2, the NMDAR or glycine receptor versus no binding from 48 control samples (p = 0.28, Fisher's test). The three seropositive individuals showed no CSF autoantibodies and no differences from the autoantibody-negative patients in their clinical phenotypes, or across multiple parameters of peripheral and central inflammation. All individuals were negative for CSF NMDAR antibodies. In conclusion, formes frustes of autoimmune encephalitis are not prevalent among FEP patients admitted to psychiatric care. Our findings do not support screening for neuronal surface autoantibodies in unselected psychotic patients.


Autoantibodies in Japanese patients with ocular myasthenia gravis.

  • Akiko Nagaishi‎ et al.
  • Muscle & nerve‎
  • 2021‎

The majority of patients with myasthenia gravis (MG) initially present with ocular symptoms, but it is difficult to predict which cases will remain as ocular MG (OMG) or will progress to generalized MG. Herein we evaluated the serologic profile of Japanese OMG and its relationship with clinical features.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: