Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting.

  • Bharath K Mani‎ et al.
  • Molecular metabolism‎
  • 2017‎

Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter.


Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse.

  • Laurent Gautron‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities.


Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions.

  • Laurent Gautron‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Vagal afferents regulate energy balance by providing a link between the brain and postprandial signals originating from the gut. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the nodose ganglion, where the cell bodies of vagal sensory afferents reside. By using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found GFP expression in approximately one-third of nodose ganglion neurons. By using immunohistochemistry combined with in situ hybridization, we also demonstrated that approximately 20% of GFP-positive neurons coexpressed cholecystokinin receptor A. In addition, we found that the GFP is transported to peripheral tissues by both vagal sensory afferents and motor efferents, which allowed us to assess the sites innervated by MC4R-GFP neurons. GFP-positive efferents that co-expressed choline acetyltransferase specifically terminated in the hepatic artery and the myenteric plexus of the stomach and duodenum. In contrast, GFP-positive afferents that did not express cholinergic or sympathetic markers terminated in the submucosal plexus and mucosa of the duodenum. Retrograde tracing experiments confirmed the innervation of the duodenum by GFP-positive neurons located in the nodose ganglion. Our findings support the hypothesis that MC4R signaling in vagal afferents may modulate the activity of fibers sensitive to satiety signals such as cholecystokinin, and that MC4R signaling in vagal efferents may contribute to the control of the liver and gastrointestinal tract.


Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

  • Kristoffer L Egerod‎ et al.
  • Molecular metabolism‎
  • 2018‎

G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract.


Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges.

  • Xuefeng Yuan‎ et al.
  • eNeuro‎
  • 2016‎

Cocaine- and amphetamine-regulated transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we reassessed the distribution and regulation of CART(55-102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting and high-fat-diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre-expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP-labeled axons could easily be identified in the dorsovagal complex. CART(55-102) immunoreactivity was observed in 55% of the ChR2-YFP-labeled neurons in the nodose ganglion and 22% of the ChR2-YFP-labeled varicosities within the area postrema of fed, fasted, and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted, and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone (MCH) immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.


Relationship of α-MSH and AgRP axons to the perikarya of melanocortin-4 receptor neurons.

  • Leandro B Lima‎ et al.
  • Brain research‎
  • 2019‎

The central melanocortin system is composed of neurons that express either the proopiomelanocortin (POMC) or the agouti-related protein (AgRP). POMC is cleaved in bioactive peptides, including the α-melanocyte-stimulating hormone (α-MSH). α-MSH activates the melanocortin-4 receptor (MC4R) inducing satiety, whereas AgRP acts as an inverse agonist of MC4R. However, only limited information is available regarding possible area-specific differences in the interaction between α-MSH and AgRP terminals on MC4R-expressing cells. Therefore, the objective of the present study was to compare the distribution pattern of α-MSH and AgRP terminals on the perikarya of MC4R-expressing neurons. We performed a triple-label immunofluorescence reaction in brain series of MC4R-reporter mice to visualize MC4R-expressing neurons together with AgRP and α-MSH terminals. POMC and AgRP neurons project to areas that contain MC4R-expressing cells, although several brain nuclei exhibit AgRP and α-MSH terminals, but they do no express MC4R, while other brain areas contain MC4R-expressing cells and receive no apparent innervation of AgRP and POMC neurons. AgRP terminals make more presumptive appositions than α-MSH on the soma of MC4R-expressing neurons of the medial preoptic area and paraventricular nucleus of the hypothalamus (Pa). Additionally, a higher percentage of MC4R cells receive at least one presumptive apposition from AgRP terminals in the median preoptic nucleus and Pa, compared to α-MSH appositions. Thus, our study revealed area-specific differences in the interaction between α-MSH and AgRP terminals and the soma of MC4R-expressing neurons. These findings provide new insights about the relationship between first- and second-order neurons of the central melanocortin system.


Physiology-forward identification of bile acid-sensitive vomeronasal receptors.

  • Wen Mai Wong‎ et al.
  • Science advances‎
  • 2020‎

The mouse accessory olfactory system (AOS) supports social and reproductive behavior through the sensation of environmental chemosignals. A growing number of excreted steroids have been shown to be potent AOS cues, including bile acids (BAs) found in feces. As is still the case with most AOS ligands, the specific receptors used by vomeronasal sensory neurons (VSNs) to detect BAs remain unknown. To identify VSN BA receptors, we first performed a deep analysis of VSN BA tuning using volumetric GCaMP6f/s Ca2+ imaging. These experiments revealed multiple populations of BA-receptive VSNs with submicromolar sensitivities. We then developed a new physiology-forward approach for identifying AOS ligand-receptor interactions, which we call Fluorescence Live Imaging for Cell Capture and RNA sequencing, or FLICCR-seq. FLICCR-seq analysis revealed five specific V1R family receptors enriched in BA-sensitive VSNs. These studies introduce a powerful new approach for ligand-receptor matching and reveal biological mechanisms underlying mammalian BA chemosensation.


Gpr149 is involved in energy homeostasis in the male mouse.

  • Steven Wyler‎ et al.
  • PeerJ‎
  • 2024‎

GPR149 is an orphan receptor about which little is known. Accordingly, in the present study, we mapped the tissue expression of Gpr149 in mice using three complementary approaches: quantitative PCR, in situ hybridization, and a newly generated Gpr149-Cre reporter mouse model. The strongest expressions of Gpr149 were observed in neurons of the islands of Calleja, the ventromedial hypothalamus, and the rostral interpeduncular nucleus. Moderate-to-low expression was also observed in the basal forebrain, striatum, hypothalamus, brainstem, and spinal cord. Some Gpr149 expression was also detected in the primary afferent neurons, enteric neurons, and pituitary endocrine cells. This expression pattern is consistent with the involvement of GPR149 signaling in the regulation of energy balance. To explore the physiological function of GPR149 in vivo, we used CRISPR-Cas9 to generate a global knockout allele with mice lacking Gpr149 exon 1. Preliminary metabolic findings indicated that Gpr149-/- mice partially resist weight gain when fed with a high-fat diet and have greater sensitivity to insulin than control mice. In summary, our data may serve as a resource for future in vivo studies on GPR149 in the context of diet-induced obesity.


Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors.

  • Yibing Wang‎ et al.
  • Nature communications‎
  • 2018‎

Innate behaviors are genetically encoded, but their underlying molecular mechanisms remain largely unknown. Predator odor 2,4,5-trimethyl-3-thiazoline (TMT) and its potent analog 2-methyl-2-thiazoline (2MT) are believed to activate specific odorant receptors to elicit innate fear/defensive behaviors in naive mice. Here, we conduct a large-scale recessive genetics screen of ethylnitrosourea (ENU)-mutagenized mice. We find that loss of Trpa1, a pungency/irritancy receptor, diminishes TMT/2MT and snake skin-evoked innate fear/defensive responses. Accordingly, Trpa1 -/- mice fail to effectively activate known fear/stress brain centers upon 2MT exposure, despite their apparent ability to smell and learn to fear 2MT. Moreover, Trpa1 acts as a chemosensor for 2MT/TMT and Trpa1-expressing trigeminal ganglion neurons contribute critically to 2MT-evoked freezing. Our results indicate that Trpa1-mediated nociception plays a crucial role in predator odor-evoked innate fear/defensive behaviors. The work establishes the first forward genetics screen to uncover the molecular mechanism of innate fear, a basic emotion and evolutionarily conserved survival mechanism.


A cardiac microRNA governs systemic energy homeostasis by regulation of MED13.

  • Chad E Grueter‎ et al.
  • Cell‎
  • 2012‎

Obesity, type 2 diabetes, and heart failure are associated with aberrant cardiac metabolism. We show that the heart regulates systemic energy homeostasis via MED13, a subunit of the Mediator complex, which controls transcription by thyroid hormone and other nuclear hormone receptors. MED13, in turn, is negatively regulated by a heart-specific microRNA, miR-208a. Cardiac-specific overexpression of MED13 or pharmacologic inhibition of miR-208a in mice confers resistance to high-fat diet-induced obesity and improves systemic insulin sensitivity and glucose tolerance. Conversely, genetic deletion of MED13 specifically in cardiomyocytes enhances obesity in response to high-fat diet and exacerbates metabolic syndrome. The metabolic actions of MED13 result from increased energy expenditure and regulation of numerous genes involved in energy balance in the heart. These findings reveal a role of the heart in systemic metabolic control and point to MED13 and miR-208a as potential therapeutic targets for metabolic disorders.


PANIC-ATTAC: a mouse model for inducible and reversible beta-cell ablation.

  • Zhao V Wang‎ et al.
  • Diabetes‎
  • 2008‎

Islet transplantations have been performed clinically, but their practical applications are limited. An extensive effort has been made toward the identification of pancreatic beta-cell stem cells that has yielded many insights to date, yet targeted reconstitution of beta-cell mass remains elusive. Here, we present a mouse model for inducible and reversible ablation of pancreatic beta-cells named the PANIC-ATTAC (pancreatic islet beta-cell apoptosis through targeted activation of caspase 8) mouse.


Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity.

  • Zhuzhen Zhang‎ et al.
  • Cell metabolism‎
  • 2021‎

Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.


Evidence of extraganglionic vagal mechanoreceptors in the mouse vagus nerve.

  • Luis Leon-Mercado‎ et al.
  • Journal of anatomy‎
  • 2023‎

Vagal afferent neuronal somas are in the nodose and jugular ganglia. In this study, we identified extraganglionic neurons in whole-mount preparations of the vagus nerves from Phox2b-Cre-ZsGreen transgenic mice. These neurons are typically arranged in small clusters and monolayers along the cervical vagus nerve. Although infrequent, these neurons were sometimes observed along the thoracic and esophageal vagus. We performed RNAscope in situ hybridization and confirmed that the extraganglionic neurons detected in this transgenic mouse strain expressed vagal afferent markers (i.e., Phox2b and Slc17a6) as well as markers that identify them as potential gastrointestinal mechanoreceptors (i.e., Tmc3 and Glp1r). We also identified extraganglionic neurons in the vagus nerves of wild-type mice that were injected intraperitoneally with Fluoro-Gold, thereby ruling out possible anatomical discrepancies specific for transgenic mice. In wild-type mice, extraganglionic cells were positive for peripherin, confirming their neuronal nature. Taken together, our findings revealed a previously undiscovered population of extraganglionic neurons associated with the vagus nerve. Going forward, it is important to consider the possible existence of extraganglionic mechanoreceptors that transmit signals from the abdominal viscera in future studies related to vagal structure and function.


E3 ubiquitin ligase Herc3 deficiency leads to accumulation of subretinal microglia and retinal neurodegeneration.

  • Yeshumenesh Zegeye‎ et al.
  • Scientific reports‎
  • 2024‎

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Loss of the liver X receptor LXRα/β in peripheral sensory neurons modifies energy expenditure.

  • Virginie Mansuy-Aubert‎ et al.
  • eLife‎
  • 2015‎

Peripheral neural sensory mechanisms play a crucial role in metabolic regulation but less is known about the mechanisms underlying vagal sensing itself. Recently, we identified an enrichment of liver X receptor alpha and beta (LXRα/β) in the nodose ganglia of the vagus nerve. In this study, we show mice lacking LXRα/β in peripheral sensory neurons have increased energy expenditure and weight loss when fed a Western diet (WD). Our findings suggest that the ability to metabolize and sense cholesterol and/or fatty acids in peripheral neurons is an important requirement for physiological adaptations to WDs.


Lipopolysacharide Rapidly and Completely Suppresses AgRP Neuron-Mediated Food Intake in Male Mice.

  • Yang Liu‎ et al.
  • Endocrinology‎
  • 2016‎

Although Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by proinflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS) (100 μg/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia.


Laser-capture microdissection and transcriptional profiling of the dorsomedial nucleus of the hypothalamus.

  • Syann Lee‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Identifying neuronal molecular markers with restricted patterns of expression is a crucial step in dissecting the numerous pathways and functions of the brain. While the dorsomedial nucleus of the hypothalamus (DMH) has been implicated in a host of physiological processes, current functional studies have been limited by the lack of molecular markers specific for DMH. Identification of such markers would facilitate the development of mouse models with DMH-specific genetic manipulations. Here we used a combination of laser-capture microdissection (LCM) and gene expression profiling to identify genes that are highly expressed within the DMH relative to adjacent hypothalamic regions. Six of the most highly expressed of these genes, Gpr50, 4930511J11Rik, Pcsk5, Grp, Sulf1, and Rorβ, were further characterized by real-time polymerase chain reaction (PCR) analysis and in situ hybridization histochemistry. The genes identified in this article will provide the basis for future gene-targeted approaches for studying DMH function.


Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen.

  • Laurent Gautron‎ et al.
  • The Journal of comparative neurology‎
  • 2013‎

Accumulating evidence demonstrates that acetylcholine can directly modulate immune function in peripheral tissues including the spleen and gastrointestinal tract. However, the anatomical relationships between the peripheral cholinergic system and immune cells located in these lymphoid tissues remain unclear due to inherent technical difficulties with currently available neuroanatomical methods. In this study, mice with specific expression of the tdTomato fluorescent protein in choline acetyltransferase (ChAT)-expressing cells were used to label preganglionic and postganglionic cholinergic neurons and their projections to lymphoid tissues. Notably, our anatomical observations revealed an abundant innervation in the intestinal lamina propria of the entire gastrointestinal tract principally originating from cholinergic enteric neurons. The aforementioned innervation frequently approached macrophages, plasma cells, and lymphocytes located in the lamina propria and, to a lesser extent, lymphocytes in the interfollicular areas of Peyer's patches. In addition to the above innervation, we observed labeled epithelial cells in the gallbladder and lower intestines, as well as Microfold cells and T-cells within Peyer's patches. In contrast, we found only a sparse innervation in the spleen consisting of neuronal fibers of spinal origin present around arterioles and in lymphocyte-containing areas of the white pulp. Lastly, a small population of ChAT-expressing lymphocytes was identified in the spleen including both T- and B-cells. In summary, this study describes the variety of cholinergic neuronal and nonneuronal cells in a position to modulate gastrointestinal and splenic immunity in the mouse.


Identification of Leptin Receptor-Expressing Cells in the Nodose Ganglion of Male Mice.

  • Luis Leon Mercado‎ et al.
  • Endocrinology‎
  • 2019‎

Leptin has been proposed to modulate viscerosensory information directly at the level of vagal afferents. In support of this view, broad expression for the leptin receptor (Lepr) has previously been reported in vagal afferents. However, the exact identity and distribution of leptin-sensitive vagal afferents has not been elucidated. Using quantitative PCR, we found that the whole mouse nodose ganglion was predominantly enriched in the short form of Lepr, rather than its long form. Consistent with this observation, the acute administration of leptin did not stimulate JAK-STAT signaling in the nodose ganglion. Using chromogenic in situ hybridization in wild-type mice and several reporter mouse models, we demonstrated that Lepr mRNA was restricted to nonneuronal cells in the epineurium and parenchyma of the nodose ganglion and a subset of vagal afferents, which accounted for only 3% of all neuronal profiles. Double labeling studies further established that Lepr-expressing vagal afferents were Nav1.8-negative fibers that did not supply the peritoneal cavity. Finally, double chromogenic in situ hybridization revealed that many Lepr-expressing neurons coexpressed the angiotensin 1a receptor (At1ar), which is a gene expressed in baroreceptors. Taken together, our data challenge the commonly held view that Lepr is broadly expressed in vagal afferents. Instead, our data suggest that leptin may exert a previously unrecognized role, mainly via its short form, as a direct modulator of a very small group of At1ar-positive vagal fibers.


Characterization of a cell bridge variant connecting the nodose and superior cervical ganglia in the mouse: Prevalence, anatomical features, and practical implications.

  • Angie L Bookout‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

While autonomic ganglia have been extensively studied in rats instead of mice, there is renewed interest in the anatomy of the mouse autonomic nervous system. This study examined the prevalence and anatomical features of a cell bridge linking two autonomic ganglia of the neck, namely, the nodose ganglion (NG) and the superior cervical ganglion (SCG) in a cohort of C57BL/6J mice. We identified a cell bridge between the NG and the cranial pole of the SCG. This cell bridge was tubular shaped with an average length and width of 700 and 240 μm, respectively. The cell bridge was frequently unilateral and significantly more prevalent in the ganglionic masses from males (38%) than females (21%). On each of its extremities, it contained a mixed of vagal afferents and postganglionic sympathetic neurons. The two populations of neurons abruptly replaced each other in the middle of the cell bridge. We examined the mRNA expression for selected autonomic markers in samples of the NG with or without cell bridge. Our results indicated that the cell bridge was enriched in both markers of postganglionic sympathetic and vagal afferents neurons. Lastly, using FluoroGold microinjection into the NG, we found that the existence of a cell bridge may occasionally lead to the inadvertent contamination of the SCG. In summary, this study describes the anatomy of a cell bridge variant consisting of the fusion of the mouse NG and SCG. The practical implications of our observations are discussed with respect to studies of the mouse vagal afferents, an area of research of increasing popularity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: