Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Constitutive and functional expression of YB-1 in microglial cells.

  • G Keilhoff‎ et al.
  • Neuroscience‎
  • 2015‎

Y-box-binding protein (YB-1) is a member of the cold-shock protein family and participates in a wide variety of DNA/RNA-dependent cellular processes including DNA repair, transcription, mRNA splicing, packaging, and translation. At the cellular level, YB-1 is involved in cell proliferation and differentiation, stress responses, and malignant cell transformation. A general role for YB-1 during inflammation has also been well described; however, there are minimal data concerning YB-1 expression in microglia, which are the immune cells of the brain. Therefore, we studied the expression of YB-1 in a clinically relevant global ischemia model for neurological injury following cardiac arrest. This model is characterized by massive neurodegeneration of the hippocampal CA1 region and the subsequent long-lasting activation of microglia. In addition, we studied YB-1 expression in BV-2 cells, which are an accepted microglia culture model. BV-2 cells were stressed by oxygen/glucose deprivation (OGD), OGD-relevant mediators, lipopolysaccharide (LPS), and phagocytosis-inducing cell debris and nanoparticles. Using quantitative polymerase chain reaction (PCR), we show constitutive expression of YB-1 transcripts in unstressed BV-2 cells. The functional upregulation of the YB-1 protein was demonstrated in microglia in vivo and in BV-2 cells in vitro. All stressors except for LPS were potent enhancers of the level of YB-1 protein, which appears to be regulated primarily by proteasomal degradation and, to a lesser extent, by the activation (phosphorylation) of the translation initiation factor eIF4E. The proteasome of BV-2 cells is impaired by OGD, which results in decreased protein degradation and therefore increased levels of YB-1 protein. LPS induces proteasome activity, which enables the level of YB-1 protein to remain at control levels despite enhanced protein ubiquitination. The proteasome inhibitor MG-132 was able to increase YB-1 protein levels in control and LPS-treated cultures. YB-1 upregulation was not accompanied by its translocation from the cytoplasm to the nucleus. YB-1 induction appeared to be related to microglial proliferation because it was partially co-regulated with Ki67. In addition, YB-1 protein levels correlated with microglia phagocytic activity because its upregulation could also be induced by inert NPs.


Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals.

  • S tom Dieck‎ et al.
  • The Journal of cell biology‎
  • 1998‎

The molecular architecture of the cytomatrix of presynaptic nerve terminals is poorly understood. Here we show that Bassoon, a novel protein of >400,000 Mr, is a new component of the presynaptic cytoskeleton. The murine bassoon gene maps to chromosome 9F. A comparison with the corresponding rat cDNA identified 10 exons within its protein-coding region. The Bassoon protein is predicted to contain two double-zinc fingers, several coiled-coil domains, and a stretch of polyglutamines (24 and 11 residues in rat and mouse, respectively). In some human proteins, e.g., Huntingtin, abnormal amplification of such poly-glutamine regions causes late-onset neurodegeneration. Bassoon is highly enriched in synaptic protein preparations. In cultured hippocampal neurons, Bassoon colocalizes with the synaptic vesicle protein synaptophysin and Piccolo, a presynaptic cytomatrix component. At the ultrastructural level, Bassoon is detected in axon terminals of hippocampal neurons where it is highly concentrated in the vicinity of the active zone. Immunogold labeling of synaptosomes revealed that Bassoon is associated with material interspersed between clear synaptic vesicles, and biochemical studies suggest a tight association with cytoskeletal structures. These data indicate that Bassoon is a strong candidate to be involved in cytomatrix organization at the site of neurotransmitter release.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: