Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination.

  • Florence R Fricker‎ et al.
  • Brain : a journal of neurology‎
  • 2013‎

Neuregulin 1 acts as an axonal signal that regulates multiple aspects of Schwann cell development including the survival and migration of Schwann cell precursors, the ensheathment of axons and subsequent elaboration of the myelin sheath. To examine the role of this factor in remyelination and repair following nerve injury, we ablated neuregulin 1 in the adult nervous system using a tamoxifen inducible Cre recombinase transgenic mouse system. The loss of neuregulin 1 impaired remyelination after nerve crush, but did not affect Schwann cell proliferation associated with Wallerian degeneration or axon regeneration or the clearance of myelin debris by macrophages. Myelination changes were most marked at 10 days after injury but still apparent at 2 months post-crush. Transcriptional analysis demonstrated reduced expression of myelin-related genes during nerve repair in animals lacking neuregulin 1. We also studied repair over a prolonged time course in a more severe injury model, sciatic nerve transection and reanastamosis. In the neuregulin 1 mutant mice, remyelination was again impaired 2 months after nerve transection and reanastamosis. However, by 3 months post-injury axons lacking neuregulin 1 were effectively remyelinated and virtually indistinguishable from control. Neuregulin 1 signalling is therefore an important factor in nerve repair regulating the rate of remyelination and functional recovery at early phases following injury. In contrast to development, however, the determination of myelination fate following nerve injury is not dependent on axonal neuregulin 1 expression. In the early phase following injury, axonal neuregulin 1 therefore promotes nerve repair, but at late stages other signalling pathways appear to compensate.


Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy.

  • Jone López-Erauskin‎ et al.
  • Annals of neurology‎
  • 2011‎

Axonal degeneration is a main contributor to disability in progressive neurodegenerative diseases in which oxidative stress is often identified as a pathogenic factor. We aim to demonstrate that antioxidants are able to improve axonal degeneration and locomotor deficits in a mouse model of X-adrenoleukodystrophy (X-ALD).


Membrane metallo-endopeptidase is dispensable for repair after nerve injury.

  • Ilaria Cervellini‎ et al.
  • Glia‎
  • 2019‎

Membrane metallo-endopeptidase (MME), also known as neprilysin (NEP), has been of interest for its role in neurodegeneration and pain due to its ability to degrade β-amyloid and substance-P, respectively. In addition to its role in the central nervous system, MME has been reported to be expressed in the peripheral system, specifically in the inner and outer border of myelinating fibers, in the Schmidt-Lantermann cleft and in the paranodes. Recently, mutations of this gene have been associated with Charcot-Marie-Tooth Type 2 (CMT2). Peripheral nerve morphometry in mice lacking MME previously showed minor abnormalities in aged animals in comparison to CMT2 patients. We found that MME expression was dysregulated after nerve injury in a Neuregulin-1 dependent fashion. We therefore explored the hypothesis that MME may have a role in remyelination. In the naïve state in adulthood we did not find any impairment in myelination in MME KO mice. After nerve injury the morphological outcome in MME KO mice was indistinguishable from WT littermates in terms of axon regeneration and remyelination. We did not find any difference in functional motor recovery. There was a significant difference in sensory function, with MME KO mice starting to recover response to mechanical stimuli earlier than WT. The epidermal reinnnervation, however, was unchanged and this altered sensitivity may relate to its known function in cleaving the peptide substance-P, known to sensitise nociceptors. In conclusion, although MME expression is dysregulated after nerve injury in a NRG1-dependent manner this gene is dispensable for axon regeneration and remyelination after injury.


RalGTPases contribute to Schwann cell repair after nerve injury via regulation of process formation.

  • Jorge Galino‎ et al.
  • The Journal of cell biology‎
  • 2019‎

RalA and RalB are small GTPases that are involved in cell migration and membrane dynamics. We used transgenic mice in which one or both GTPases were genetically ablated to investigate the role of RalGTPases in the Schwann cell (SC) response to nerve injury and repair. RalGTPases were dispensable for SC function in the naive uninjured state. Ablation of both RalA and RalB (but not individually) in SCs resulted in impaired axon remyelination and target reinnervation following nerve injury, which resulted in slowed recovery of motor function. Ral GTPases were localized to the leading lamellipodia in SCs and were required for the formation and extension of both axial and radial processes of SCs. These effects were dependent on interaction with the exocyst complex and impacted on the rate of SC migration and myelination. Our results show that RalGTPases are required for efficient nerve repair by regulating SC process formation, migration, and myelination, therefore uncovering a novel role for these GTPases.


Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability.

  • John M Dawes‎ et al.
  • Neuron‎
  • 2018‎

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.


Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy.

  • Agatha Schlüter‎ et al.
  • Human molecular genetics‎
  • 2012‎

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder characterized by axonopathy and demyelination in the central nervous system and adrenal insufficiency. Main X-ALD phenotypes are: (i) an adult adrenomyeloneuropathy (AMN) with axonopathy in spinal cords, (ii) cerebral AMN with brain demyelination (cAMN) and (iii) a childhood variant, cALD, characterized by severe cerebral demyelination. Loss of function of the ABCD1 peroxisomal fatty acid transporter and subsequent accumulation of very-long-chain fatty acids (VLCFAs) are the common culprits to all forms of X-ALD, an aberrant microglial activation accounts for the cerebral forms, whereas inflammation allegedly plays no role in AMN. How VLCFA accumulation leads to neurodegeneration and what factors account for the dissimilar clinical outcomes and prognosis of X-ALD variants remain elusive. To gain insights into these questions, we undertook a transcriptomic approach followed by a functional-enrichment analysis in spinal cords of the animal model of AMN, the Abcd1(-) null mice, and in normal-appearing white matter of cAMN and cALD patients. We report that the mouse model shares with cAMN and cALD a common signature comprising dysregulation of oxidative phosphorylation, adipocytokine and insulin signaling pathways, and protein synthesis. Functional validation by quantitative polymerase chain reaction, western blots and assays in spinal cord organotypic cultures confirmed the interplay of these pathways through IkB kinase, being VLCFA in excess a causal, upstream trigger promoting the altered signature. We conclude that X-ALD is, in all its variants, a metabolic/inflammatory syndrome, which may offer new targets in X-ALD therapeutics.


Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury.

  • Katalin Bartus‎ et al.
  • Brain : a journal of neurology‎
  • 2016‎

Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination. However, this endogenous repair response is suboptimal and may account for the persistently compromised function of surviving axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal columns, become associated with peripheral myelin. The molecular control, functional role and origin of these central remyelinating Schwann cells is currently unknown. The growth factor neuregulin-1 (Nrg1, encoded by NRG1) is a key signalling factor controlling myelination in the peripheral nervous system, via signalling through ErbB tyrosine kinase receptors. Here we examined whether Nrg1 is required for Schwann cell-mediated remyelination of central dorsal column axons and whether Nrg1 ablation influences the degree of spontaneous remyelination and functional recovery following spinal cord injury. In contused adult mice with conditional ablation of Nrg1, we found an absence of Schwann cells within the spinal cord and profound demyelination of dorsal column axons. There was no compensatory increase in oligodendrocyte remyelination. Removal of peripheral input to the spinal cord and proliferation studies demonstrated that the majority of remyelinating Schwann cells originated within the injured spinal cord. We also examined the role of specific Nrg1 isoforms, using mutant mice in which only the immunoglobulin-containing isoforms of Nrg1 (types I and II) were conditionally ablated, leaving the type III Nrg1 intact. We found that the immunoglobulin Nrg1 isoforms were dispensable for Schwann cell-mediated remyelination of central axons after spinal cord injury. When functional effects were examined, both global Nrg1 and immunoglobulin-specific Nrg1 mutants demonstrated reduced spontaneous locomotor recovery compared to injured controls, although global Nrg1 mutants were more impaired in tests requiring co-ordination, balance and proprioception. Furthermore, electrophysiological assessments revealed severely impaired axonal conduction in the dorsal columns of global Nrg1 mutants (where Schwann cell-mediated remyelination is prevented), but not immunoglobulin-specific mutants (where Schwann cell-mediated remyelination remains intact), providing robust evidence that the profound demyelinating phenotype observed in the dorsal columns of Nrg1 mutant mice is related to conduction failure. Our data provide novel mechanistic insight into endogenous regenerative processes after spinal cord injury, demonstrating that Nrg1 signalling regulates central axon remyelination and functional repair and drives the trans-differentiation of central precursor cells into peripheral nervous system-like Schwann cells that remyelinate spinal axons after injury. Manipulation of the Nrg1 system could therefore be exploited to enhance spontaneous repair after spinal cord injury and other central nervous system disorders with a demyelinating pathology.media-1vid110.1093/brain/aww039_video_abstractaww039_video_abstract.


Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration.

  • Peter I Joyce‎ et al.
  • Human molecular genetics‎
  • 2016‎

Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106(-/-) mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106(-/-) mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106(-/-) mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106(-/-) motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.


Co-cultures with stem cell-derived human sensory neurons reveal regulators of peripheral myelination.

  • Alex J Clark‎ et al.
  • Brain : a journal of neurology‎
  • 2017‎

See Saporta and Shy (doi:10.1093/awx048) for a scientific commentary on this article.Effective bidirectional signalling between axons and Schwann cells is essential for both the development and maintenance of peripheral nerve function. We have established conditions by which human induced pluripotent stem cell-derived sensory neurons can be cultured with rat Schwann cells, and have produced for the first time long-term and stable myelinating co-cultures with human neurons. These cultures contain the specialized domains formed by axonal interaction with myelinating Schwann cells, such as clustered voltage-gated sodium channels at the node of Ranvier and Shaker-type potassium channel (Kv1.2) at the juxtaparanode. Expression of type III neuregulin-1 (TIIINRG1) in induced pluripotent stem cell-derived sensory neurons strongly enhances myelination, while conversely pharmacological blockade of the NRG1-ErbB pathway prevents myelination, providing direct evidence for the ability of this pathway to promote the myelination of human sensory axons. The β-secretase, BACE1 is a protease needed to generate active NRG1 from the full-length form. Due to the fact that it also cleaves amyloid precursor protein, BACE1 is a therapeutic target in Alzheimer's disease, however, consistent with its role in NRG1 processing we find that BACE1 inhibition significantly impairs myelination in our co-culture system. In order to exploit co-cultures to address other clinically relevant problems, they were exposed to anti-disialosyl ganglioside antibodies, including those derived from a patient with a sensory predominant, inflammatory neuropathy with mixed axonal and demyelinating electrophysiology. The co-cultures reveal that both mouse and human disialosyl antibodies target the nodal axolemma, induce acute axonal degeneration in the presence of complement, and impair myelination. The human, neuropathy-associated IgM antibody is also shown to induce complement-independent demyelination. Myelinating co-cultures using human induced pluripotent stem cell-derived sensory neurons thus provide insights into the cellular and molecular specialization of axoglial signalling, how pharmacological agents may promote or impede such signalling and the pathogenic effects of ganglioside antibodies.awx012media15372351982001.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: