Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Enhanced fear recall and emotional arousal in rats recovering from chronic variable stress.

  • Jennifer McGuire‎ et al.
  • Physiology & behavior‎
  • 2010‎

Emergence of posttraumatic-like behaviors following chronic trauma is of interest given the rising prevalence of combat-related posttraumatic stress disorder (PTSD). Stress associated with combat usually involves chronic traumatization, composed of multiple, single episode events occurring in an unpredictable fashion. In this study, we investigated whether rats recovering from repeated trauma in the form of chronic variable stress (CVS) express posttraumatic stress-like behaviors and dysregulated neuroendocrine responses. Cohorts of Long-Evans rats underwent a 7 day CVS paradigm followed by behavioral and neuroendocrine testing during early (16 h post CVS) and delayed (7 day) recovery time points. A fear conditioning-extinction-reminder shock paradigm revealed that CVS induces exaggerated fear recall to reminder shock, suggestive of potentiated fear memory. Rats with CVS experience also expressed a delayed expression of fearful arousal under aversive context, however, social anxiety was not affected during post-CVS recovery. Persistent sensitization of the hypothalamic-pituitary-adrenocorticotropic response to a novel acute stressor was observed in CVS exposed rats. Collectively, our data are consistent with the constellation of symptoms associated with posttraumatic stress syndrome, such as re-experiencing, and arousal to fearful contexts. The CVS-recovery paradigm may be useful to simulate trauma outcomes following chronic traumatization that is often associated with repeated combat stress.


Behavioral and physiological consequences of enrichment loss in rats.

  • Brittany L Smith‎ et al.
  • Psychoneuroendocrinology‎
  • 2017‎

Significant loss produces the highest degree of stress and compromised well-being in humans. Current rodent models of stress involve the application of physically or psychologically aversive stimuli, but do not address the concept of loss. We developed a rodent model for significant loss, involving removal of long-term access to a rewarding enriched environment. Our results indicate that removal from environmental enrichment produces a profound behavioral and physiological phenotype with depression-like qualities, including helplessness behavior, hypothalamo-pituitary-adrenocortical axis dysregulation and overeating. Importantly, this enrichment removal phenotype was prevented by antidepressant treatment. Furthermore, the effects of enrichment removal do not occur following relief from chronic stress and are not duplicated by loss of exercise or social contact.


RU486 Mitigates Hippocampal Pathology Following Status Epilepticus.

  • Aynara C Wulsin‎ et al.
  • Frontiers in neurology‎
  • 2016‎

Status epilepticus (SE) induces rapid hyper-activation of the hypothalamo-pituitary-adrenocortical (HPA) axis. HPA axis hyperactivity results in excess exposure to high levels of circulating glucocorticoids, which are associated with neurotoxicity and depression-like behavior. These observations have led to the hypothesis that HPA axis dysfunction may exacerbate SE-induced brain injury. To test this hypothesis, we used the mouse pilocarpine model of epilepsy to determine whether use of the glucocorticoid receptor antagonist RU486 can attenuate hippocampal pathology following SE. Excess glucocorticoid secretion was evident 1 day after SE in the mice, preceding the development of spontaneous seizures (which can take weeks to develop). RU486 treatment blocked the SE-associated elevation of glucocorticoid levels in pilocarpine-treated mice. RU486 treatment also mitigated the development of hippocampal pathologies induced by SE, reducing loss of hilar mossy cells and limiting pathological cell proliferation in the dentate hilus. Mossy cell loss and accumulation of ectopic hilar cells are positively correlated with epilepsy severity, suggesting that early treatment with glucocorticoid antagonists could have anti-epileptogenic effects.


Environmental enrichment protects against functional deficits caused by traumatic brain injury.

  • Erica M Johnson‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2013‎

Environmental enrichment (EE) increases cortical weight, neuronal density, dendritic branching, and angiogenesis, all of which may be critical for functional recovery following insult. Our study was designed to determine possible benefits of pre-exposure to EE in preventing functional deficits following traumatic brain injury (TBI) to the prefrontal cortex. To examine the benefit of EE, adult male rats were placed in an enriched environment for 15 days. Enrichment was provided through social interaction, exercise, olfactory stimulation, and new objects/toys to explore. Following enrichment, experimental and age-matched controls were subjected to a moderate medial prefrontal cortex injury via controlled cortical impact (CCI). After 1 week recovery, animals were behaviorally tested to assess memory, anxiety, and sensory neglect. Lesion-induced deficits in spatial memory [Morris water maze (MWM)] were significantly attenuated in EE pre-exposed rats 18-21 days following injury. In addition, TBI-induced sensory neglect was significantly reduced in EE rats relative to non-enriched animals. No differences in anxiety-like behavior on the elevated plus maze (EPM) were detected. The behavioral data suggest that EE is neuroprotective when applied prior to TBI, resulting in improved recovery following injury.


End-point variability is not noise in saccade adaptation.

  • James P Herman‎ et al.
  • PloS one‎
  • 2013‎

When each of many saccades is made to overshoot its target, amplitude gradually decreases in a form of motor learning called saccade adaptation. Overshoot is induced experimentally by a secondary, backwards intrasaccadic target step (ISS) triggered by the primary saccade. Surprisingly, however, no study has compared the effectiveness of different sizes of ISS in driving adaptation by systematically varying ISS amplitude across different sessions. Additionally, very few studies have examined the feasibility of adaptation with relatively small ISSs. In order to best understand saccade adaptation at a fundamental level, we addressed these two points in an experiment using a range of small, fixed ISS values (from 0° to 1° after a 10° primary target step). We found that significant adaptation occurred across subjects with an ISS as small as 0.25°. Interestingly, though only adaptation in response to 0.25° ISSs appeared to be complete (the magnitude of change in saccade amplitude was comparable to size of the ISS), further analysis revealed that a comparable proportion of the ISS was compensated for across conditions. Finally, we found that ISS size alone was sufficient to explain the magnitude of adaptation we observed; additional factors did not significantly improve explanatory power. Overall, our findings suggest that current assumptions regarding the computation of saccadic error may need to be revisited.


Deletion of Glucocorticoid Receptors in Forebrain GABAergic Neurons Alters Acute Stress Responding and Passive Avoidance Behavior in Female Mice.

  • Jessie R Scheimann‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2018‎

The glucocorticoid receptor (GR) is critically involved in regulation of stress responses [inhibition of the hypothalamic-pituitary-adrenal (HPA) axis], emotional behavior and cognition via interactions with forebrain corticolimbic circuity. Work to date has largely focused on GR actions in forebrain excitatory neurons; however, recent studies suggest a potential role mediated by interneurons. Here, we targeted GR deletion in forebrain GABAergic neurons, including the cortical interneurons, using a Dlx5/6-Cre driver line to test the role of forebrain interneuronal GR in HPA axis regulation and behavior. Our data indicate that GR deletion in GABAergic neurons causes elevated corticosterone stress responsiveness and decreased cross-over latencies in a passive avoidance task in females, but not males. Dlx5/6-Cre driven gene deletion caused loss of GR in interneurons in the prefrontal cortex (PFC) and hippocampus, but also in select diencephalic GABAergic neurons (including the reticular thalamic nucleus and dorsomedial hypothalamus). Our data suggest that GR signaling in interneurons is differentially important in females, which may have implications for GR-directed therapies for stress-related affective disease states.


Membrane-initiated nuclear trafficking of the glucocorticoid receptor in hypothalamic neurons.

  • Jennifer R Rainville‎ et al.
  • Steroids‎
  • 2019‎

Glucocorticoid binding to the intracellular glucocorticoid receptor (GR) stimulates the translocation of the GR from the cytosol to the nucleus, which leads to the transactivation or transrepression of gene transcription. However, multiple lines of evidence suggest that glucocorticoid signaling can also be initiated from the plasma membrane. Here, we provide evidence for membrane-initiated glucocorticoid signaling by a membrane-impermeant dexamethasone-bovine serum albumin (Dex-BSA) conjugate, which induced GR nuclear trafficking in hypothalamic neurons in vitro and in vivo. The GR nuclear translocation induced by a membrane-impermeant glucocorticoid suggests trafficking of an unliganded GR. The membrane-initiated GR trafficking was not blocked by inhibiting ERK MAPK, p38 MAPK, PKA, Akt, Src kinase, or calcium signaling, but was inhibited by Akt activation. Short-term exposure of hypothalamic neurons to dexamethasone (Dex) activated the glucocorticoid response element (GRE), suggesting transcriptional transactivation, whereas exposure to the Dex-BSA conjugate failed to activate the GRE, suggesting differential transcriptional activity of the liganded compared to the unliganded GR. Microarray analysis revealed divergent transcriptional regulation by Dex-BSA compared to Dex. Together, our data suggest that signaling from a putative membrane glucocorticoid receptor induces the trafficking of unliganded GR to the nucleus, which elicits a pattern of gene transcription that differs from that of the liganded receptor. The differential transcriptional signaling by liganded and unliganded receptors may contribute to the broad range of genetic regulation by glucocorticoids, and may help explain some of the different off-target actions of glucocorticoid drugs.


Lasting Impact of Chronic Adolescent Stress and Glucocorticoid Receptor Selective Modulation in Male and Female Rats.

  • Evelin M Cotella‎ et al.
  • Psychoneuroendocrinology‎
  • 2020‎

Adolescent animals are vulnerable to the effects of stress on brain development. We hypothesized that long-term effects of adolescent chronic stress are mediated by glucocorticoid receptor (GR) signaling. We used a specific GR modulator (CORT108297) to pharmacologically disrupt GR signaling in adolescent rats during exposure to chronic variable stress (CVS). Male and female rats received 30 mg/kg of drug during a 2-week CVS protocol starting at PND46. Emotional reactivity (open field) and coping behaviors (forced swim test (FST)) were then tested in adulthood, 5 weeks after the end of the CVS protocol. Blood samples were collected two days before FST and serial samples after the onset of the swim test to determine baseline and stress response levels of HPA hormones respectively. Our results support differential behavioral, physiological and stress circuit reactivity to adolescent chronic stress exposure in males and females, with variable involvement of GR signaling. In response to adolescent stress, males had heightened reactivity to novelty and exhibited marked reduction in neuronal excitation following swim stress in adulthood, whereas females developed a passive coping strategy in the FST and enhanced HPA axis stress reactivity. Only the latter effect was attenuated by treatment with the GR modulator C108297. In summary, our data suggest that adolescent stress differentially affects emotional behavior and circuit development in males and females, and that GR manipulation during stress can reverse at least some of these effects.


Optic tract injury after closed head traumatic brain injury in mice: A model of indirect traumatic optic neuropathy.

  • Nathan K Evanson‎ et al.
  • PloS one‎
  • 2018‎

Adult male C57BL/6J mice have previously been reported to have motor and memory deficits after experimental closed head traumatic brain injury (TBI), without associated gross pathologic damage or neuroimaging changes detectable by magnetic resonance imaging or diffusion tensor imaging protocols. The presence of neurologic deficits, however, suggests neural damage or dysfunction in these animals. Accordingly, we undertook a histologic analysis of mice after TBI. Gross pathology and histologic analysis using Nissl stain and NeuN immunohistochemistry demonstrated no obvious tissue damage or neuron loss. However, Luxol Fast Blue stain revealed myelin injury in the optic tract, while Fluoro Jade B and silver degeneration staining revealed evidence of axonal neurodegeneration in the optic tract as well as the lateral geniculate nucleus of the thalamus and superior colliculus (detectable at 7 days, but not 24 hours, after injury). Fluoro Jade B staining was not detectable in other white matter tracts, brain regions or in cell somata. In addition, there was increased GFAP staining in these optic tract, lateral geniculate, and superior colliculus 7 days post-injury, and morphologic changes in optic tract microglia that were detectable 24 hours after injury but were more prominent 7 days post-injury. Interestingly, there were no findings of degeneration or gliosis in the suprachiasmatic nucleus, which is also heavily innervated by the optic tract. Using micro-computed tomography imaging, we also found that the optic canal appears to decrease in diameter with a dorsal-ventral load on the skull, which suggests that the optic canal may be the site of injury. These results suggest that there is axonal degeneration in the optic tract and a subset of directly innervated areas, with associated neuroinflammation and astrocytosis, which develop within 7 days of injury, and also suggest that this weight drop injury may be a model for studying indirect traumatic optic neuropathy.


Long-term impact of chronic variable stress in adolescence versus adulthood.

  • Evelin M Cotella‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2019‎

Adolescence is a period of active development of stress regulatory neurocircuitry. As a consequence, mechanisms that control the responses to stress are not fully matured during this developmental period, which may result in vulnerability to chronic stress. We hypothesized that adolescent chronic stress would have negative consequences on stress adaptation later in life. Male Wistar rats (PND40) were subjected to chronic variable stress (CVS) for 2 weeks, with 2 daily stressors randomly presented and overnight social stressors twice a week. After five weeks, animals were evaluated during adulthood, using the elevated plus maze (EPM) and the forced swim test (FST). The hypothalamic-pituitary adrenal (HPA) axis response to a 30-min restraint was also assessed. Results are compared to those of adult rats tested 5 weeks following CVS cessation. Our results demonstrate that the long-term effects of CVS are specific to the age of application of the stress regime. We show how behavior and HPA axis response as well as hypothalamic paraventricular nucleus activation can differ with age, resulting in differential behavioral adaptations for animals stressed in adolescence and dysregulation of the HPA axis in the animals stressed in adulthood, These data underscore the importance of the adolescent period in determining resilience of the HPA axis and programming behavioral responses later in life.


Neuronal modulation in the mouse superior colliculus during covert visual selective attention.

  • Lupeng Wang‎ et al.
  • Scientific reports‎
  • 2022‎

Covert visual attention is accomplished by a cascade of mechanisms distributed across multiple brain regions. Visual cortex is associated with enhanced representations of relevant stimulus features, whereas the contributions of subcortical circuits are less well understood but have been associated with selection of relevant spatial locations and suppression of distracting stimuli. As a step toward understanding these subcortical circuits, here we identified how neuronal activity in the intermediate layers of the superior colliculus (SC) of head-fixed mice is modulated during covert visual attention. We found that spatial cues modulated both firing rate and spike-count correlations. Crucially, the cue-related modulation in firing rate was due to enhancement of activity at the cued spatial location rather than suppression at the uncued location, indicating that SC neurons in our task were modulated by an excitatory or disinhibitory circuit mechanism focused on the relevant location, rather than broad inhibition of irrelevant locations. This modulation improved the neuronal discriminability of visual-change-evoked activity, but only when assessed for neuronal activity between the contralateral and ipsilateral SC. Together, our findings indicate that neurons in the mouse SC can contribute to covert visual selective attention by biasing processing in favor of locations expected to contain task-relevant information.


Chronic social subordination stress modulates glutamic acid decarboxylase (GAD) 67 mRNA expression in central stress circuits.

  • Ryan Makinson‎ et al.
  • Physiology & behavior‎
  • 2015‎

Chronic social subordination is a well-known precipitant of numerous psychiatric and physiological health concerns. In this study, we examine the effects of chronic social stress in the visible burrow system (VBS) on the expression of glutamic acid decarboxylase (GAD) 67 and brain-derived neurotropic factor (BDNF) mRNA in forebrain stress circuitry. Male rats in the VBS system form a dominance hierarchy, whereby subordinate males exhibit neuroendocrine and physiological profiles characteristic of chronic exposure to stress. We found that social subordination decreases GAD67 mRNA in the peri-paraventricular nucleus region of the hypothalamus and the interfascicular nucleus of the bed nucleus of the stria terminalis (BNST), and increases in GAD67 mRNA in the hippocampus, medial prefrontal cortex, and dorsal medial hypothalamus. Expression of BDNF mRNA increased in the dorsal region of the BNST, but remained unchanged in all other regions examined. Results from this study indicate that social subordination is associated with several region-specific alterations in GAD67 mRNA expression in central stress circuits, whereas changes in the expression of BDNF mRNA are limited to the BNST.


Divergent effects of repeated restraint versus chronic variable stress on prefrontal cortical immune status after LPS injection.

  • Brittany L Smith‎ et al.
  • Brain, behavior, and immunity‎
  • 2016‎

Previous work from our group has shown that chronic homotypic stress (repeated restraint - RR) increases microglial morphological activation in the prefrontal cortex (PFC), while chronic heterotypic stress (chronic variable stress - CVS) produces no such effect. Therefore, we hypothesized that stressor modality would also determine the susceptibility of the PFC to a subsequent inflammatory stimulus (low dose lipopolysaccharide (LPS)). We found that RR, but not CVS, increased Iba-1 soma size in the PFC after LPS injection, consistent with microglial activation. In contrast, CVS decreased gene expression of proinflammatory cytokines and Iba-1 in the PFC under baseline conditions, which were not further affected by LPS. Thus, RR appears to promote microglial responses to LPS, whereas CVS is largely immunosuppressive. The results suggest that neuroimmune changes caused by CVS may to some extent protect the PFC from subsequent inflammatory stimuli. These data suggest that modality and/or intensity of stressful experiences will be a major determinant of central inflammation and its effect on prefrontal cortex-mediated functions.


Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: differential inputs to the anterior versus posterior subregions.

  • Yvonne M Ulrich-Lai‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

The hypothalamic paraventricular nucleus (PVN) regulates numerous homeostatic systems and functions largely under the influence of forebrain inputs. Glutamate is a major neurotransmitter in forebrain, and glutamate neurosignaling in the PVN is known to mediate many of its functions. Previous work showed that vesicular glutamate transporters (VGluTs; specific markers for glutamatergic neurons) are expressed in forebrain sites that project to the PVN; however, the extent of this presumed glutamatergic innervation to the PVN is not clear. In the present study retrograde FluoroGold (FG) labeling of PVN-projecting neurons was combined with in situ hybridization for VGluT1 and VGluT2 mRNAs to identify forebrain regions that provide glutamatergic innervation to the PVN and its immediate surround in rats, with special consideration for the sources to the anterior versus posterior PVN. VGluT1 mRNA colocalization with retrogradely labeled FG neurons was sparse. VGluT2 mRNA colocalization with FG neurons was most abundant in the ventromedial hypothalamus after anterior PVN FG injections, and in the lateral, posterior, dorsomedial, and ventromedial hypothalamic nuclei after posterior PVN injections. Anterograde tract tracing combined with VGluT2 immunolabeling showed that 1) ventromedial nucleus-derived glutamatergic inputs occur in both the anterior and posterior PVN; 2) posterior nucleus-derived glutamatergic inputs occur predominantly in the posterior PVN; and 3) medial preoptic nucleus-derived inputs to the PVN are not glutamatergic, thereby corroborating the innervation pattern seen with retrograde tracing. The results suggest that PVN subregions are influenced by varying amounts and sources of forebrain glutamatergic regulation, consistent with functional differentiation of glutamate projections.


Impact of corticosterone treatment on spontaneous seizure frequency and epileptiform activity in mice with chronic epilepsy.

  • Olagide W Castro‎ et al.
  • PloS one‎
  • 2012‎

Stress is the most commonly reported precipitating factor for seizures in patients with epilepsy. Despite compelling anecdotal evidence for stress-induced seizures, animal models of the phenomena are sparse and possible mechanisms are unclear. Here, we tested the hypothesis that increased levels of the stress-associated hormone corticosterone (CORT) would increase epileptiform activity and spontaneous seizure frequency in mice rendered epileptic following pilocarpine-induced status epilepticus. We monitored video-EEG activity in pilocarpine-treated mice 24/7 for a period of four or more weeks, during which animals were serially treated with CORT or vehicle. CORT increased the frequency and duration of epileptiform events within the first 24 hours of treatment, and this effect persisted for up to two weeks following termination of CORT injections. Interestingly, vehicle injection produced a transient spike in CORT levels - presumably due to the stress of injection - and a modest but significant increase in epileptiform activity. Neither CORT nor vehicle treatment significantly altered seizure frequency; although a small subset of animals did appear responsive. Taken together, our findings indicate that treatment of epileptic animals with exogenous CORT designed to mimic chronic stress can induce a persistent increase in interictal epileptiform activity.


Chronic social stress in the visible burrow system modulates stress-related gene expression in the bed nucleus of the stria terminalis.

  • Dennis C Choi‎ et al.
  • Physiology & behavior‎
  • 2006‎

Prolonged social subjugation produces physiological indices of chronic stress in rats. In the current study, we examined the impact of social stress on glutamic acid decarboxylase (GAD) isoforms, corticotropin-releasing hormone (CRH) and vasopressin mRNA expression in forebrain stress circuitry, using the visible burrow system model of dominance-subordination. Subordinate male rats develop behavioral and neuroendocrine changes consistent with exposure to chronic stress, including marked loss of body weight and elevation of basal plasma corticosterone relative to dominant rats. Forebrain GAD65, GAD67, CRH and vasopressin mRNA expression in central stress-regulatory circuits were examined by in situ hybridization. Elevated CRH mRNA was observed in the oval nucleus of the bed nucleus of the stria terminalis (BST) of subordinate males. In contrast, GAD67 expression was decreased in the interfascicular nucleus of the BST in both the subordinate and dominant rats compared to non-burrow control rats. No changes in CRH, GAD or vasopressin were observed in amygdaloid nuclei, other BST nuclei or in the hypothalamic paraventricular nucleus. Collectively, these data suggest that exposure to the visible burrow system attenuates BST GAD expression regardless of social status, whereas the enhanced physiological responses to social stress seen in subordinates may be associated with enhanced CRH expression in the oval nucleus of the BST.


Conditional deletion of glucocorticoid receptors in rat brain results in sex-specific deficits in fear and coping behaviors.

  • Jessie R Scheimann‎ et al.
  • eLife‎
  • 2019‎

Glucocorticoid receptors (GR) have diverse functions relevant to maintenance of homeostasis and adaptation to environmental challenges. Understanding the importance of tissue-specific GR function in physiology and behavior has been hampered by near-ubiquitous localization in brain and body. Here we use CRISPR/Cas9 gene editing to create a conditional GR knockdown in Sprague Dawley rats. To test the impact of cell- and region-specific GR knockdown on physiology and behavior, we targeted GR knockdown to output neurons of the prelimbic cortex. Prelimbic knockdown of GR in females caused deficits in acquisition and extinction of fear memory during auditory fear conditioning, whereas males exhibited enhanced active-coping behavior during forced swim. Our data support the utility of this conditional knockdown rat to afford high-precision knockdown of GR across a variety of contexts, ranging from neuronal depletion to circuit-wide manipulations, leveraging the behavioral tractability and enhanced brain size of the rat as a model organism.


Color-Change Detection Activity in the Primate Superior Colliculus.

  • James P Herman‎ et al.
  • eNeuro‎
  • 2017‎

The primate superior colliculus (SC) is a midbrain structure that participates in the control of spatial attention. Previous studies examining the role of the SC in attention have mostly used luminance-based visual features (e.g., motion, contrast) as the stimuli and saccadic eye movements as the behavioral response, both of which are known to modulate the activity of SC neurons. To explore the limits of the SC's involvement in the control of spatial attention, we recorded SC neuronal activity during a task using color, a visual feature dimension not traditionally associated with the SC, and required monkeys to detect threshold-level changes in the saturation of a cued stimulus by releasing a joystick during maintained fixation. Using this color-based spatial attention task, we found substantial cue-related modulation in all categories of visually responsive neurons in the intermediate layers of the SC. Notably, near-threshold changes in color saturation, both increases and decreases, evoked phasic bursts of activity with magnitudes as large as those evoked by stimulus onset. This change-detection activity had two distinctive features: activity for hits was larger than for misses, and the timing of change-detection activity accounted for 67% of joystick release latency, even though it preceded the release by at least 200 ms. We conclude that during attention tasks, SC activity denotes the behavioral relevance of the stimulus regardless of feature dimension and that phasic event-related SC activity is suitable to guide the selection of manual responses as well as saccadic eye movements.


Microglial Acid Sensing Regulates Carbon Dioxide-Evoked Fear.

  • Lauren Larke Vollmer‎ et al.
  • Biological psychiatry‎
  • 2016‎

Carbon dioxide (CO2) inhalation, a biological challenge and pathologic marker in panic disorder, evokes intense fear and panic attacks in susceptible individuals. The molecular identity and anatomic location of CO2-sensing systems that translate CO2-evoked fear remain unclear. We investigated contributions of microglial acid sensor T cell death-associated gene-8 (TDAG8) and microglial proinflammatory responses in CO2-evoked behavioral and physiological responses.


Differential Regulation of Neuropeptide Y in the Amygdala and Prefrontal Cortex during Recovery from Chronic Variable Stress.

  • Jennifer L McGuire‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2011‎

Accumulating evidence from clinical studies and pre-clinical animal models supports a role for neuropeptide Y (NPY) in adaptive emotional response following stress. The long-term impact of stress, particularly chronic stress, on availability, and function of resilience factors such as NPY may be critical to understanding the etiology of stress-related psychopathology. In these studies, we examined expression of NPY during recovery from a chronic variable stress (CVS) model of repetitive trauma in rats. Due to the importance of amygdala and prefrontal cortex in regulating emotional responses, we predicted chronic changes in NPY expression could contribute to persistent behavioral deficits seen in this model. Consistent with the hypothesis, ELISA for NPY peptide identified a significant reduction in NPY at the delayed (7 days) recovery time-point. Interestingly, a significant increase in prefrontal NPY was observed at the same recovery time-point. The mRNA expression for NPY was not changed in the amygdala or PFC, although there was a modest but not statistically significant increase in NPY mRNA at the delayed recovery time-point in the prefrontal cortex. The observed changes in NPY expression are consistent with maladaptive coping and enhanced emotionality, due to the nature of NPY signaling within these respective regions, and the nature of reciprocal connections between amygdala and prefrontal cortex.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: