Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Proteome analysis of mouse primary astrocytes.

  • Jae-Won Yang‎ et al.
  • Neurochemistry international‎
  • 2005‎

Astrocytes play a role in energy metabolism, neuronal homeostasis and release of neuronal growth factors and several neurotransmitters. They also relate to a variety of brain diseases and contribute to restore brain dysfunction. Although current research has revealed several roles for astrocytes, knowledge on astrocytic protein expression is limited and a systematic and comprehensive proteome study of astrocytes has not been reported so far. We applied a proteomics technique based on two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF) and unambiguously identified 301 spots corresponding to 191 individual proteins in primary mouse astrocytes. The identified proteins were from antioxidant, chaperone, cytoskeleton, nucleic acid binding, signaling, proteasomal, hypothetical and miscellaneous proteins. A reference database is provided and proteins were identified in astrocytes specifically and unambiguously for the first time. A reliable analytical tool independent of antibody availability and specificity along with tentative astrocytic marker proteins is described.


Altered expression of hypothetical proteins in hippocampus of transgenic mice overexpressing human Cu/Zn-superoxide dismutase 1.

  • Joo-Ho Shin‎ et al.
  • Proteome science‎
  • 2004‎

BACKGROUND: Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1. RESULTS: We applied a proteomics approach using two-dimensional electrophoresis (2-DE) with in-gel digestion of spots followed by mass spectrometric (matrix-assisted laser desorption/ionization-time of flight) identification and quantification of hypothetical proteins using specific software. Hippocampi of wild type, hemizygous and homozygous SOD1 transgenic mice (SOD1-TGs) were analysed.We identified fourteen hypothetical proteins in mouse hippocampus. Of these, expression levels of 2610008O03Rik protein (Q9D0K2) and 4632432E04Rik protein (Q9D358) were significantly decreased (P < 0.05 and 0.001) and hypothetical protein (Q99KP6) was significantly increased (P < 0.05) in hippocampus of SOD1-TGs as compared with non-transgenic mice. CONCLUSIONS: The biological meaning of aberrant expression of these proteins may be impairment of metabolism, signaling and transcription machinery in SOD1-TGs brain that in turn may help to explain deterioration of these systems in DS brain.


Relative overhydration is independently associated with left ventricular hypertrophy in dialysis naïve patients with stage 5 chronic kidney disease.

  • Byoung-Geun Han‎ et al.
  • Scientific reports‎
  • 2020‎

Patients with chronic kidney disease (CKD) have a high prevalence of left ventricular hypertrophy (LVH), which increases as kidney function decreases. LVH pathophysiology is complex, making it difficult to generalise its evolution in CKD. Therefore, early detection and prevention of risk factors are critical. Assessment and management of volume status can minimise cardiovascular complications including LVH. We retrospectively investigated the associations between fluid overload and LVH in patients with stage 5 CKD not undergoing dialysis in prospective cohort of 205 patients (age: 59.34 ± 13.51 years; women: 43.4%). All patients, free of intrinsic heart disease, were assessed for relative overhydration/extracellular water (OH/ECW) by bioimpedance spectroscopy. Our results show that markers reflecting fluid balance were significantly higher in the LVH group and as OH/ECW increased, the left ventricular mass index (LVMI) trended higher. Furthermore, our results show that systolic blood pressure, serum phosphorus levels, and OH/ECW were independently associated with LVMI and that OH/ECW was independently associated with LVH. Structural and functional evaluation of the heart using echocardiography and volume status assessment using bioimpedance should be performed simultaneously in patients with early-stage CKD, even in those without evident cardiovascular disease.


Anatomical variations of the innervated radial artery superficial palmar branch flap: A series of 28 clinical cases.

  • Jae-Won Yang‎
  • Archives of plastic surgery‎
  • 2020‎

The innervated radial artery superficial palmar branch (iRASP) flap was designed to provide consistent innervation by the palmar cutaneous branch of the median nerve (PCMN) to a glabrous skin flap. The iRASP flap is used to achieve coverage of diverse volar defects of digits. However, unexpected anatomical variations can affect flap survival and outcomes.


Effect of Ginseng on Calretinin Expression in Mouse Hippocampus Following Exposure to 835 MHz Radiofrequency.

  • Bijay Aryal‎ et al.
  • Journal of ginseng research‎
  • 2011‎

Exponential rise in the use of mobile communication devices has generated health concerns due to radiofrequency (RF) exposure due to its close proximity to the head. Calcium binding proteins like calretinin regulate the levels of calcium (Ca(2+)) which plays an important role in biological systems. Ginseng is known for maintaining equilibrium in the human body and may play a beneficial radioprotectant role against electromagnetic field (EMF) exposure. In the present study, we evaluated the radioprotective effects of red ginseng (RG) extract in a mouse model. Calretinin (CR) expression was measured using a free-floating immunohistochemical method in the hippocampus of mice after 835 MHz EMF exposure for 5 h/d for 5 d at specific absorption rate=1.6 W/kg for the different experimental groups. The control animals were treated with NaCl while the experimental animals received 10 mg/kg ginseng, or 30 mg/kg; EMF exposed mice were also treated with NaCl, 10 mg/kg ginseng (E10), or 30 mg/kg (E30). Decreases in CR immunoreactivity (IR) along with loss of CA1 and CA3 interneurons and infragranular cells were observed in the ENaCl group while such losses were not observed in the E10 and E30 groups. CR IR significantly increased in the RG-treated group compared to control and EMF-exposed groups treated with NaCl. The study demonstrates that RG extract can serve as a radioprotective agent that maintains Ca(2+) homeostasis and prevents neuronal loss in the brain hippocampal region caused by RF exposure.


Evidence for existence of thirty hypothetical proteins in rat brain.

  • Joo-Ho Shin‎ et al.
  • Proteome science‎
  • 2004‎

BACKGROUND: The rapid completion of genome sequences has created an infrastructure of biological information and provided essential information to link genes to gene products, proteins, the building blocks for cellular functions. In addition, genome/cDNA sequences make it possible to predict proteins for which there is no experimental evidence. Clues for function of hypothetical proteins are provided by sequence similarity with proteins of known function in model organisms. RESULTS: We constructed a two-dimensional protein map and searched for expression of hypothetical proteins in rat brain. Two-dimensional electrophoresis (2-DE) with subsequent in-gel digestion of spots and matrix-assisted laser desorption/ionization (MALDI) spectrometric identification were applied. In total about 3700 spots were analysed, which resulted in the identification of about 1700 polypeptides, that were the products of 190 different genes. A number of hypothetical gene products were detected (30 of 190, 15.8%) and are considered brain proteins. CONCLUSIONS: A major finding of this study is the demonstration of the existence of putative proteins that were so far only deduced from their nucleic acid structure by a protein chemical method independent of antibody availability and specificity and unambiguously identifying proteins.


Trafficking-dependent phosphorylation of Kv1.2 regulates voltage-gated potassium channel cell surface expression.

  • Jae-Won Yang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2007‎

Kv1.2 alpha-subunits are components of low-threshold, rapidly activating voltage-gated potassium (Kv) channels in mammalian neurons. Expression and localization of Kv channels is regulated by trafficking signals encoded in their primary structure. Kv1.2 is unique in lacking strong trafficking signals and in exhibiting dramatic cell-specific differences in trafficking, which is suggestive of conditional trafficking signals. Here we show that a cluster of cytoplasmic C-terminal phosphorylation sites regulates Kv1.2 trafficking. Using tandem MS to analyze Kv1.2 purified from rat, human, and mouse brain, we identified in each sample in vivo phosphoserine (pS) phosphorylation sites at pS434, pS440, and pS441, as well as doubly phosphorylated pS440/pS441. We also found these sites, as well as pS449, on recombinant Kv1.2 expressed in heterologous cells. We found that phosphorylation at pS440/pS441 is present only on the post-endoplasmic reticulum (ER)/cell surface pool of Kv1.2 and is not detectable on newly synthesized and ER-localized Kv1.2, on which we did observe pS449 phosphorylation. Elimination of PS440/PS441 phosphorylation by mutation reduces cell-surface expression efficiency and functional expression of homomeric Kv1.2 channels. Interestingly, mutation of S449 reduces phosphorylation at pS440/pS441 and also decreases Kv1.2 cell-surface expression efficiency and functional expression. These mutations also suppress trafficking of Kv1.2/Kv1.4 heteromeric channels, suggesting that incorporation of Kv1.2 into heteromeric complexes confers conditional phosphorylation-dependent trafficking to diverse Kv channel complexes. These data support Kv1.2 phosphorylation at these clustered C-terminal sites as playing an important role in regulating trafficking of Kv1.2-containing Kv channels.


Constitutive Endocytosis of the Neuronal Glutamate Transporter Excitatory Amino Acid Transporter-3 Requires ARFGAP1.

  • Kusumika Saha‎ et al.
  • Frontiers in physiology‎
  • 2021‎

The eukaryotic endocytic pathway regulates protein levels available at the plasma membrane by recycling them into specific endosomal compartments. ARFGAP1 is a component of the coat protein I (COPI) complex but it also plays a role in promoting adapter protein-2 (AP-2) mediated endocytosis. The excitatory amino acid transporter-3 (EAAT3) mediates the reuptake of glutamate from the synaptic cleft to achieve rapid termination of synaptic transmission at glutamatergic synapses. In this study, we identified two interacting proteins of EAAT3 by mass spectrometry (MS) ARFGAP1 and ARF6. We explored the role of ARFGAP1 and ARF6 in the endocytosis of EAAT3. Our data revealed that ARFGAP1 plays a role in the recycling of EAAT3, by utilizing its GTPase activating protein (GAP) activity and ARF6 acting as the substrate. ARFGAP1 promotes cargo sorting of EAAT3 via a single phenylalanine residue (F508) located at the C-terminus of the transporter. ARFGAP1-promoted AP-2 dependent endocytosis is abolished upon neutralizing F508. We utilized a heterologous expression system to identify an additional motif in the C-terminus of EAAT3 that regulates its endocytosis. Impairment in endocytosis did not affect somatodendritic targeting in cultured hippocampal neurons. Our findings support a model where endocytosis of EAAT3 is a multifactorial event regulated by ARFGAP1, occurring via the C-terminus of the transporter, and is the first study to examine the role of ARFGAP1 in the endocytosis of a transport protein.


A Practical and Analytical Comparative Study of Gel-Based Top-Down and Gel-Free Bottom-Up Proteomics Including Unbiased Proteoform Detection.

  • Huriye Ercan‎ et al.
  • Cells‎
  • 2023‎

Proteomics is an indispensable analytical technique to study the dynamic functioning of biological systems via different proteins and their proteoforms. In recent years, bottom-up shotgun has become more popular than gel-based top-down proteomics. The current study examined the qualitative and quantitative performance of these two fundamentally different methodologies by the parallel measurement of six technical and three biological replicates of the human prostate carcinoma cell line DU145 using its two most common standard techniques, label-free shotgun and two-dimensional differential gel electrophoresis (2D-DIGE). The analytical strengths and limitations were explored, finally focusing on the unbiased detection of proteoforms, exemplified by discovering a prostate cancer-related cleavage product of pyruvate kinase M2. Label-free shotgun proteomics quickly yields an annotated proteome but with reduced robustness, as determined by three times higher technical variation compared to 2D-DIGE. At a glance, only 2D-DIGE top-down analysis provided valuable, direct stoichiometric qualitative and quantitative information from proteins to their proteoforms, even with unexpected post-translational modifications, such as proteolytic cleavage and phosphorylation. However, the 2D-DIGE technology required almost 20 times as much time per protein/proteoform characterization with more manual work. Ultimately, this work should expose both techniques' orthogonality with their different contents of data output to elucidate biological questions.


The mediating role of the left ventricular mass index on the relationship between the fluid balance and left ventricular diastolic function in patients with chronic kidney disease.

  • Byoung-Geun Han‎ et al.
  • Kidney research and clinical practice‎
  • 2024‎

The pathophysiological mechanism of cardiovascular disease in patients with chronic kidney disease (CKD) is complicated. Mediation analysis is an important statistical tool for gaining insight into the complex mechanisms of exposure-outcome effects. We investigated the potential mediating role of the left ventricular mass index (LVMI) on the association between fluid balance (overhydration/extracellular water, OH/ECW) and left ventricular diastolic function (E/e´ ratio) in patients with CKD not yet on dialysis.


A case-control association study of the polymorphism at the promoter region of the DRD4 gene in Korean boys with attention deficit-hyperactivity disorder: evidence of association with the -521 C/T SNP.

  • Jae-Won Yang‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2008‎

Recent genetic studies at the 5' end of the dopamine D4 receptor (DRD4) gene have identified several polymorphisms having a possible relationship with attention deficit-hyperactivity disorder (ADHD). This study examined the association between the -521 and -376 promoter single nucleotide polymorphisms (SNPs) of the DRD4 gene and ADHD through a case-control association study in Korean boys, who constitute a single ethnic population. Ninety-four ADHD and ninety-five control boys were enrolled in this study. All of the ADHD subjects completed a comprehensive and standardized diagnostic and psychological evaluation battery including the ADHD Rating Scale-IV (ARS). Genotyping for the 2 promoter SNPs was performed. There were significant differences in the genotype and allele frequencies of the -521 C/T SNP between the ADHD and control groups (chi2=6.28, p=0.043 and chi2=6.22, p=0.013, respectively). However, the distribution of the -376 C/T genotypes and alleles were similar in the ADHD and control groups. The subtypes of ADHD were not related to either of these two SNPs. In the ADHD subjects, the -521 TT genotype group had a higher score in the inattentive subscale and a lower score in the hyperactive subscale of the parents version of ARS, although these differences did not attain statistical significance (p=0.146, p=0.082). In conclusion, there was a significant association between the -521 C/T SNP and ADHD in Korean boys. These results suggest a role of the -521 C/T SNP in the susceptibility for ADHD.


Fluid overload is a determinant for cardiac structural and functional impairments in type 2 diabetes mellitus and chronic kidney disease stage 5 not undergoing dialysis.

  • Byoung-Geun Han‎ et al.
  • PloS one‎
  • 2020‎

Fluid overload is common in patients with diabetes and chronic kidney disease (DM and CKD; DMCKD) and can lead to structural and functional cardiac abnormalities including left ventricular hypertrophy (LVH) and left ventricular diastolic dysfunction (LVDD). Fluid overload represents a crucial step in the pathophysiological pathways to chronic heart failure in patients with end-stage renal disease. We evaluated the impact of fluid overload on cardiac alterations in patients with diabetes and non-dialysis-dependent CKD stage 5 (DMCKD5-ND) without intrinsic heart disease.


Structural basis of organic cation transporter-3 inhibition.

  • Basavraj Khanppnavar‎ et al.
  • Nature communications‎
  • 2022‎

Organic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases. Despite its importance, the structural basis of OCT3 function and its inhibition has remained enigmatic. Here we describe the cryo-EM structure of human OCT3 at 3.2 Å resolution. Structures of OCT3 bound to two inhibitors, corticosterone and decynium-22, define the ligand binding pocket and reveal common features of major facilitator transporter inhibitors. In addition, we relate the functional characteristics of an extensive collection of previously uncharacterized human genetic variants to structural features, thereby providing a basis for understanding the impact of OCT3 polymorphisms.


Cdk-mediated phosphorylation of the Kvβ2 auxiliary subunit regulates Kv1 channel axonal targeting.

  • Hélène Vacher‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Kv1 channels are concentrated at specific sites in the axonal membrane, where they regulate neuronal excitability. Establishing these distributions requires regulated dissociation of Kv1 channels from the neuronal trafficking machinery and their subsequent insertion into the axonal membrane. We find that the auxiliary Kvβ2 subunit of Kv1 channels purified from brain is phosphorylated on serine residues 9 and 31, and that cyclin-dependent kinase (Cdk)-mediated phosphorylation at these sites negatively regulates the interaction of Kvβ2 with the microtubule plus end-tracking protein EB1. Endogenous Cdks, EB1, and Kvβ2 phosphorylated at serine 31 are colocalized in the axons of cultured hippocampal neurons, with enrichment at the axon initial segment (AIS). Acute inhibition of Cdk activity leads to intracellular accumulation of EB1, Kvβ2, and Kv1 channel subunits within the AIS. These studies reveal a new regulatory mechanism for the targeting of Kv1 complexes to the axonal membrane through the reversible Cdk phosphorylation-dependent binding of Kvβ2 to EB1.


Ca(2+)/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome.

  • Thomas Steinkellner‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.


Interactions of calmodulin kinase II with the dopamine transporter facilitate cocaine-induced enhancement of evoked dopamine release.

  • Jacqueline D Keighron‎ et al.
  • Translational psychiatry‎
  • 2023‎

Typical and atypical dopamine uptake inhibitors (DUIs) prefer distinct conformations of the dopamine transporter (DAT) to form ligand-transporter complexes, resulting in markedly different effects on behavior, neurochemistry, and potential for addiction. Here we show that cocaine and cocaine-like typical psychostimulants elicit changes in DA dynamics distinct from those elicited by atypical DUIs, as measured via voltammetry procedures. While both classes of DUIs reduced DA clearance rate, an effect significantly related to their DAT affinity, only typical DUIs elicited a significant stimulation of evoked DA release, an effect unrelated to their DAT affinity, which suggests a mechanism of action other than or in addition to DAT blockade. When given in combination, typical DUIs enhance the stimulatory effects of cocaine on evoked DA release while atypical DUIs blunt them. Pretreatments with an inhibitor of CaMKIIα, a kinase that interacts with DAT and that regulates synapsin phosphorylation and mobilization of reserve pools of DA vesicles, blunted the effects of cocaine on evoked DA release. Our results suggest a role for CaMKIIα in modulating the effects of cocaine on evoked DA release without affecting cocaine inhibition of DA reuptake. This effect is related to a specific DAT conformation stabilized by cocaine. Moreover, atypical DUIs, which prefer a distinct DAT conformation, blunt cocaine's neurochemical and behavioral effects, indicating a unique mechanism underlying their potential as medications for treating psychostimulant use disorder.


Platelet Phenotype Analysis of COVID-19 Patients Reveals Progressive Changes in the Activation of Integrin αIIbβ3, F13A1, the SARS-CoV-2 Target EIF4A1 and Annexin A5.

  • Huriye Ercan‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Background: The fatal consequences of an infection with severe acute respiratory syndrome coronavirus 2 are not only caused by severe pneumonia, but also by thrombosis. Platelets are important regulators of thrombosis, but their involvement in the pathogenesis of COVID-19 is largely unknown. The aim of this study was to determine their functional and biochemical profile in patients with COVID-19 in dependence of mortality within 5-days after hospitalization. Methods: The COVID-19-related platelet phenotype was examined by analyzing their basal activation state via integrin αIIbβ3 activation using flow cytometry and the proteome by unbiased two-dimensional differential in-gel fluorescence electrophoresis. In total we monitored 98 surviving and 12 non-surviving COVID-19 patients over 5 days of hospital stay and compared them to healthy controls (n = 12). Results: Over the observation period the level of basal αIIbβ3 activation on platelets from non-surviving COVID-19 patients decreased compared to survivors. In line with this finding, proteomic analysis revealed a decrease in the total amount of integrin αIIb (ITGA2B), a subunit of αIIbβ3, in COVID-19 patients compared to healthy controls; the decline was even more pronounced for the non-survivors. Consumption of the fibrin-stabilizing factor coagulation factor XIIIA (F13A1) was higher in platelets from COVID-19 patients and tended to be higher in non-survivors; plasma concentrations of the latter also differed significantly. Depending on COVID-19 disease status and mortality, increased amounts of annexin A5 (ANXA5), eukaryotic initiation factor 4A-I (EIF4A1), and transaldolase (TALDO1) were found in the platelet proteome and also correlated with the nasopharyngeal viral load. Dysregulation of these proteins may play a role for virus replication. ANXA5 has also been identified as an autoantigen of the antiphospholipid syndrome, which is common in COVID-19 patients. Finally, the levels of two different protein disulfide isomerases, P4HB and PDIA6, which support thrombosis, were increased in the platelets of COVID-19 patients. Conclusion: Platelets from COVID-19 patients showed significant changes in the activation phenotype, in the processing of the final coagulation factor F13A1 and the phospholipid-binding protein ANXA5 compared to healthy subjects. Additionally, these results demonstrate specific alterations in platelets during COVID-19, which are significantly linked to fatal outcome.


Phosphorylation regulates the sensitivity of voltage-gated Kv7.2 channels towards phosphatidylinositol-4,5-bisphosphate.

  • Isabella Salzer‎ et al.
  • The Journal of physiology‎
  • 2017‎

Phosphatidylinositol-4,5-bisphosphate (PIP2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2 . Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2 , thereby ensuring the tight regulation of the channel via G protein-coupled receptors.


Validation study of tripartite model of anxiety and depression in children and adolescents: clinical sample in Korea.

  • Jae-Won Yang‎ et al.
  • Journal of Korean medical science‎
  • 2006‎

Although the currently available literature has provided some empirical support for a tripartite model of child and adolescent anxiety and depression, one of the limitations of these studies was that they have been conducted in America, primarily with Caucasians. In order to make this model more applicable to diverse ethnic and cultural groups, this study used a tripartite model for child and adolescent anxiety and depression in Korea, using confirmatory factor analysis with logically selected items from the Revised Children's Manifest Anxiety Scale (RCMAS), as well as the Children's Depression Inventory (CDI). The results indicated that the model fit of a three-factor model was superior to one- and two-factor models. In addition, the findings of discriminant analysis demonstrated that the correct classification rate with three factors of the tripartite model was superior to the classification rate achievable using CDI and RCMAS. In a departure from Clark and Watson's hypothesis, however, the correlations of three factors were significantly higher than had been expected. The results are discussed on the basis of cultural background.


Phosphatidylinositol 4,5-bisphosphate (PIP2) facilitates norepinephrine transporter dimerization and modulates substrate efflux.

  • Dino Luethi‎ et al.
  • Communications biology‎
  • 2022‎

The plasmalemmal norepinephrine transporter (NET) regulates cardiovascular sympathetic activity by clearing extracellular norepinephrine in the synaptic cleft. Here, we investigate the subunit stoichiometry and function of NET using single-molecule fluorescence microscopy and flux assays. In particular, we show the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) on NET oligomerization and efflux. NET forms monomers (~60%) and dimers (~40%) at the plasma membrane. PIP2 depletion results in a decrease in the average oligomeric state and decreases NET-mediated substrate efflux while not affecting substrate uptake. Mutation of the putative PIP2 binding residues R121, K334, and R440 to alanines does not affect NET dimerization but results in decreased substrate efflux that is not altered upon PIP2 depletion; this indicates that PIP2 interactions with these residues affect NET-mediated efflux. A dysregulation of norepinephrine and PIP2 signaling have both been implicated in neuropsychiatric and cardiovascular diseases. This study provides evidence that PIP2 directly regulates NET organization and function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: