Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Common Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson's Disease: An Observational and Case-Control Study.

  • G T Kannarkat‎ et al.
  • NPJ Parkinson's disease‎
  • 2015‎

The common non-coding single nucleotide polymorphism (SNP) rs3129882 in HLA-DRA is associated with risk for idiopathic Parkinson's disease (PD). The location of the SNP in the major histocompatibility complex class II (MHC-II) locus implicates regulation of antigen presentation as a potential mechanism by which immune responses link genetic susceptibility to environmental factors in conferring lifetime risk for PD.


High-Performance Liquid Chromatography Method for Rich Pharmacokinetic Sampling Schemes in Translational Rat Toxicity Models With Vancomycin.

  • M D Joshi‎ et al.
  • Clinical and translational science‎
  • 2017‎

A translational need exists to understand and predict vancomycin-induced kidney toxicity. We describe: (i) a vancomycin high-performance liquid chromatography (HPLC) method for rat plasma and kidney tissue homogenate; (ii) a rat pharmacokinetic (PK) study to demonstrate utility; and (iii) a catheter retention study to enable future preclinical studies. Rat plasma and pup kidney tissue homogenate were analyzed via HPLC for vancomycin concentrations ranging from 3-75 and 15.1-75.5 μg/mL, respectively, using a Kinetex Biphenyl column and gradient elution of water with 0.1% formic acid: acetonitrile (70:30 v/v). Sprague-Dawley rats (n = 10) receiving 150 mg/kg of vancomycin intraperitoneally had plasma sampled for PK. Finally, a catheter retention study was performed on polyurethane catheters to assess adsorption. Precision was <6.1% for all intra-assay and interassay HPLC measurements, with >96.3% analyte recovery. A two-compartment model fit the data well, facilitating PK exposure estimates. Finally, vancomycin was heterogeneously retained by polyurethane catheters.


Mitochondrial bioenergetic deficits in the hippocampi of rats with chronic ischemia-induced vascular dementia.

  • J Du‎ et al.
  • Neuroscience‎
  • 2013‎

Vascular dementia (VD), defined as a loss of memory and cognitive function resulting from vascular lesions in the brain, is the second-most-common cause of dementia in the elderly, after Alzheimer's disease. In recent years, research has focused on the pathogenesis of VD, and mitochondrial bioenergetic deficits have been suggested to contribute to VD onset. To further investigate the role of mitochondria in VD, we used a rat model of VD, which involved permanent bilateral occlusion of the common carotid arteries (with a 1-week interval between artery occlusion to avoid an abrupt reduction in cerebral blood flow) leading to chronic cerebral hypoperfusion. Prior to occlusion, male Wistar rats underwent 7 days of Morris water maze training. Only animals that could swim and passed the Morris water maze test were chosen for the study. After 5 days of Morris water maze training, mitochondria from the hippocampi of rats, which were randomly selected from animals that could complete the Morris water maze test, were isolated for functional assessment. Mitochondria isolated from the hippocampi of rats from the ischemia group had decreased pyruvate dehydrogenase protein levels, and increased oxidative stress, as manifested by increased hydrogen peroxide production. The ischemia group mitochondria also exhibited decreased respiration coupled to decreased expression and activity of the electron transport chain complex IV (cytochrome c oxidase). These results indicate that the mitochondrial oxidative metabolism is inhibited in the hippocampi of rats following chronic ischemia-induced VD. As the mitochondrial oxidative metabolism deficits, namely mitochondrial bioenergetic deficits directly affect the functions of neurons, it may contribute to VD onset.


Mutagenic mapping of the Na-K-Cl cotransporter for domains involved in ion transport and bumetanide binding.

  • P Isenring‎ et al.
  • The Journal of general physiology‎
  • 1998‎

The human and shark Na-K-Cl cotransporters (NKCCs) are 74% identical in amino acid sequence yet they display marked differences in apparent affinities for the ions and bumetanide. In this study, we have used chimeras and point mutations to determine which transmembrane domains (tm's) are responsible for the differences in ion transport and in inhibitor binding kinetics. When expressed in HEK-293 cells, all the mutants carry out bumetanide-sensitive 86Rb influx. The kinetic behavior of these constructs demonstrates that the first seven tm's contain all of the residues conferring affinity differences. In conjunction with our previous finding that tm 2 plays an important role in cation transport, the present observations implicate the fourth and seventh tm helices in anion transport. Thus, it appears that tm's 2, 4, and 7 contain the essential affinity-modifying residues accounting for the human-shark differences with regard to cation and anion transport. Point mutations have narrowed the list of candidates to 13 residues within the three tm's. The affinity for bumetanide was found to be affected by residues in the same tm 2-7 region, and also by residues in tm's 11 and 12. Unlike for the ions, changes in bumetanide affinity were nonlinear and difficult to interpret: the Ki(bumetanide) of a number of the constructs was outside the range of sNKCC1 and hNKCC1 Kis.


LRRK2 levels in immune cells are increased in Parkinson's disease.

  • D A Cook‎ et al.
  • NPJ Parkinson's disease‎
  • 2017‎

Mutations associated with leucine-rich repeat kinase 2 are the most common known cause of Parkinson's disease. The known expression of leucine-rich repeat kinase 2 in immune cells and its negative regulatory function of nuclear factor of activated T cells implicates leucine-rich repeat kinase 2 in the development of the inflammatory environment characteristic of Parkinson's disease. The aim of this study was to determine the expression pattern of leucine-rich repeat kinase 2 in immune cell subsets and correlate it with the immunophenotype of cells from Parkinson's disease and healthy subjects. For immunophenotyping, blood cells from 40 Parkinson's disease patients and 32 age and environment matched-healthy control subjects were analyzed by flow cytometry. Multiplexed immunoassays were used to measure cytokine output of stimulated cells. Leucine-rich repeat kinase 2 expression was increased in B cells (p = 0.0095), T cells (p = 0.029), and CD16+ monocytes (p = 0.01) of Parkinson's disease patients compared to healthy controls. Leucine-rich repeat kinase 2 induction was also increased in monocytes and dividing T cells in Parkinson's disease patients compared to healthy controls. In addition, Parkinson's disease patient monocytes secreted more inflammatory cytokines compared to healthy control, and cytokine expression positively correlated with leucine-rich repeat kinase 2 expression in T cells from Parkinson's disease but not healthy controls. Finally, the regulatory surface protein that limits T-cell activation signals, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), was decreased in Parkinson's disease compared to HC in T cells (p = 0.029). In sum, these findings suggest that leucine-rich repeat kinase 2 has a regulatory role in immune cells and Parkinson's disease. Functionally, the positive correlations between leucine-rich repeat kinase 2 expression levels in T-cell subsets, cytokine expression and secretion, and T-cell activation states suggest that targeting leucine-rich repeat kinase 2 with therapeutic interventions could have direct effects on immune cell function.


Rnd3 haploinsufficient mice are predisposed to hemodynamic stress and develop apoptotic cardiomyopathy with heart failure.

  • X Yue‎ et al.
  • Cell death & disease‎
  • 2014‎

Rho family guanosine triphosphatase (GTPase) 3 (Rnd3), a member of the small Rho GTPase family, has been suggested to regulate cell actin cytoskeleton dynamics, cell migration, and apoptosis through the Rho kinase-dependent signaling pathway. The biological function of Rnd3 in the heart is unknown. The downregulation of small GTPase Rnd3 transcripts was found in patients with end-stage heart failure. The pathological significance of Rnd3 loss in the transition to heart failure remains unexplored. To investigate the functional consequence of Rnd3 downregulation and the associated molecular mechanism, we generated Rnd3(+/-) haploinsufficient mice to mimic the downregulation of Rnd3 observed in the failing human heart. Rnd3(+/-) mice were viable; however, the mice developed heart failure after pressure overload by transverse aortic constriction (TAC). Remarkable apoptosis, increased caspase-3 activity, and elevated Rho kinase activity were detected in the Rnd3(+/-) haploinsufficient animal hearts. Pharmacological inhibition of Rho kinase by fasudil treatment partially improved Rnd3(+/-) mouse cardiac functions and attenuated myocardial apoptosis. To determine if Rho-associated coiled-coil kinase 1 (ROCK1) was responsible for Rnd3 deficiency-mediated apoptotic cardiomyopathy, we established a double-knockout mouse line, the Rnd3 haploinsufficient mice with ROCK1-null background (Rnd3(+/-/ROCK1-/-)). Again, genetic deletion of ROCK1 partially but not completely rescued Rnd3 deficiency-mediated heart failure phenotype. These data suggest that downregulation of Rnd3 correlates with cardiac loss of function as in heart failure patients. Animals with Rnd3 haploinsufficiency are predisposed to hemodynamic stress. Hyperactivation of Rho kinase activity is responsible in part for the apoptotic cardiomyopathy development. Further investigation of ROCK1-independent mechanisms in Rnd3-mediated cardiac remodeling should be the focus for future study.


Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice.

  • J Y Chan‎ et al.
  • The EMBO journal‎
  • 1998‎

The CNC-basic leucine zipper (CNC-bZIP) family is a subfamily of bZIP proteins identified from independent searches for factors that bind the AP-1-like cis-elements in the beta-globin locus control region. Three members, p45-Nf-e2, Nrf-1 and Nrf-2 have been identified in mammals. Expression of p45-Nf-e2 is largely restricted to hematopoietic cells while Nrf-1 and Nrf-2 are expressed in a wide range of tissues. To determine the function of Nrf-1, targeted disruption of the Nrf-1 gene was carried out. Homozygous Nrf-1 mutant mice are anemic due to a non-cell autonomous defect in definitive erythropoiesis and die in utero.


Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis.

  • C Su‎ et al.
  • Mucosal immunology‎
  • 2018‎

Infection with the intestinal helminth parasite Heligmosomoides polygyrus exacerbates the colitis caused by the bacterial enteropathogen Citrobacter rodentium. To clarify the underlying mechanism, we analyzed fecal microbiota composition of control and helminth-infected mice and evaluated the functional role of compositional differences by microbiota transplantation experiments. Our results showed that infection of Balb/c mice with H. polygyrus resulted in significant changes in the composition of the gut microbiota, characterized by a marked increase in the abundance of Bacteroidetes and decreases in Firmicutes and Lactobacillales. Recipients of the gut microbiota from helminth-infected wide-type, but not STAT6-deficient, Balb/c donors had increased fecal pathogen shedding and significant worsening of Citrobacter-induced colitis compared to recipients of microbiota from control donors. Recipients of helminth-altered microbiota also displayed increased regulatory T cells and IL-10 expression. Depletion of CD4+CD25+ T cells and neutralization of IL-10 in recipients of helminth-altered microbiota led to reduced stool C. rodentium numbers and attenuated colitis. These results indicate that alteration of the gut microbiota is a significant contributor to the H. polygyrus-induced exacerbation of C. rodentium colitis. The helminth-induced alteration of the microbiota is Th2-dependent and acts by promoting regulatory T cells that suppress protective responses to bacterial enteropathogens.


Decrease of hindpaw withdrawal latency by cocaine- and amphetamine-regulated transcript peptide to the mouse spinal cord.

  • M Ohsawa‎ et al.
  • European journal of pharmacology‎
  • 2000‎

Immunohistochemical studies with the use of an antiserum against the cocaine- and amphetamine-regulated transcript (CART) peptide-(55-102) showed an abundance of CART-immunoreactive fibers in the mouse dorsal horn laminae I and II. A few CART-positive somata were scattered in the dorsal horn and around the central canal. Intrathecal injection of the CART peptide-(55-102) at doses 3, 10 and 100 ng caused a dose-dependent and significant decrease of paw withdrawal latency; whereas, saline injection was without significant effect. Our results provide the first evidence that CART-immunoreactive fibers are present in the dorsal horn and that the peptide administered intrathecally produces hyperalgesia, as assessed by paw withdrawal latency in mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: