Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy.

  • Helena Van Damme‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

Modulation and depletion strategies of regulatory T cells (Tregs) constitute valid approaches in antitumor immunotherapy but suffer from severe adverse effects due to their lack of selectivity for the tumor-infiltrating (ti-)Treg population, indicating the need for a ti-Treg specific biomarker.


CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia.

  • Chritica Lodder‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Alzheimer's disease (AD) is characterized by a sequential progression of amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N), constituting ATN pathology. While microglia are considered key contributors to AD pathogenesis, their contribution in the combined presence of ATN pathologies remains incompletely understood. As sensors of the brain microenvironment, microglial phenotypes and contributions are importantly defined by the pathologies in the brain, indicating the need for their analysis in preclinical models that recapitulate combined ATN pathologies, besides their role in A and T models only. Here, we report a new tau-seed model in which amyloid pathology facilitates bilateral tau propagation associated with brain atrophy, thereby recapitulating robust ATN pathology. Single-cell RNA sequencing revealed that ATN pathology exacerbated microglial activation towards disease-associated microglia states, with a significant upregulation of Apoe as compared to amyloid-only models (A). Importantly, Colony-Stimulating Factor 1 Receptor inhibition preferentially eliminated non-plaque-associated versus plaque associated microglia. The preferential depletion of non-plaque-associated microglia significantly attenuated tau pathology and neuronal atrophy, indicating their detrimental role during ATN progression. Together, our data reveal the intricacies of microglial activation and their contributions to pathology in a model that recapitulates the combined ATN pathologies of AD. Our data may provide a basis for microglia-targeting therapies selectively targeting detrimental microglial populations, while conserving protective populations.


Evaluation of the expression pattern of rAAV2/1, 2/5, 2/7, 2/8, and 2/9 serotypes with different promoters in the mouse visual cortex.

  • Isabelle Scheyltjens‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

This study compared the expression pattern, laminar distribution, and cell specificity of several rAAV serotypes (2/1, 2/5, 2/7, 2/8, and 2/9) injected in the primary visual cortex (V1) of adult C57Bl/6J mice. In order to obtain specific expression in certain neuron subtypes, different promoter sequences were evaluated for excitatory cell specificity: a universal cytomegalovirus (CMV) promoter, and two versions of the excitatory neuron-specific Ca(2+) /calmodulin-dependent kinase subunit α (CaMKIIα) promoter, CaMKIIα 0.4 and CaMKIIα 1.3. The spatial distribution as well as the cell type specificity was immunohistochemically verified. Depending on the rAAV serotype used, the transduced volume expressing reporter protein differed substantially (rAAV2/5 ≫ 2/7 ≈ 2/9 ≈ 2/8 ≫ 2/1). Excitatory neuron-specific targeting was promoter-dependent, with a surprising difference between the 1.3 kb and 0.4 kb CaMKIIα promoters. While CaMKIIα 1.3 and CMV carrying vectors were comparable, with 78% of the transduced neurons being excitatory for CMV and 82% for CaMKIIα 1.3, the shorter CaMKIIα 0.4 version resulted in 95% excitatory specificity. This study therefore puts forward the CaMKIIα 0.4 promoter as the best choice to target excitatory neurons with rAAVs. Together, these results can be used as an aid to select the most optimal vector system to deliver transgenes into specific rodent neocortical circuits, allowing further elucidation of their functions.


Optogenetic Stimulation of the Superior Colliculus Confers Retinal Neuroprotection in a Mouse Glaucoma Model.

  • Emiel Geeraerts‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs) in the eye, which ultimately results in visual impairment or even blindness. Because current therapies often fail to halt disease progression, there is an unmet need for novel neuroprotective therapies to support RGC survival. Various research lines suggest that visual target centers in the brain support RGC functioning and survival. Here, we explored whether increasing neuronal activity in one of these projection areas could improve survival of RGCs in a mouse glaucoma model. Prolonged activation of an important murine RGC target area, the superior colliculus (SC), was established via a novel optogenetic stimulation paradigm. By leveraging the unique channel kinetics of the stabilized step function opsin (SSFO), protracted stimulation of the SC was achieved with only a brief light pulse. SSFO-mediated collicular stimulation was confirmed by immunohistochemistry for the immediate-early gene c-Fos and behavioral tracking, which both demonstrated consistent neuronal activity upon repeated stimulation. Finally, the neuroprotective potential of optogenetic collicular stimulation was investigated in mice of either sex subjected to a glaucoma model and a 63% reduction in RGC loss was found. This work describes a new paradigm for optogenetic collicular stimulation and a first demonstration that increasing target neuron activity can increase survival of the projecting neurons.SIGNIFICANCE STATEMENT Despite glaucoma being a leading cause of blindness and visual impairment worldwide, no curative therapies exist. This study describes a novel paradigm to reduce retinal ganglion cell (RGC) degeneration underlying glaucoma. Building on previous observations that RGC survival is supported by the target neurons to which they project and using an innovative optogenetic approach, we increased neuronal activity in the mouse superior colliculus, a main projection target of rodent RGCs. This proved to be efficient in reducing RGC loss in a glaucoma model. Our findings establish a new optogenetic paradigm for target stimulation and encourage further exploration of the molecular signaling pathways mediating retrograde neuroprotective communication.


Imaging of Glioblastoma Tumor-Associated Myeloid Cells Using Nanobodies Targeting Signal Regulatory Protein Alpha.

  • Karen De Vlaminck‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Glioblastoma (GBM) is the most common malignant primary brain tumor. Glioblastomas contain a large non-cancerous stromal compartment including various populations of tumor-associated macrophages and other myeloid cells, of which the presence was documented to correlate with malignancy and reduced survival. Via single-cell RNA sequencing of human GBM samples, only very low expression of PD-1, PD-L1 or PD-L2 could be detected, whereas the tumor micro-environment featured a marked expression of signal regulatory protein alpha (SIRPα), an inhibitory receptor present on myeloid cells, as well as its widely distributed counter-receptor CD47. CITE-Seq revealed that both SIRPα RNA and protein are prominently expressed on various populations of myeloid cells in GBM tumors, including both microglia- and monocyte-derived tumor-associated macrophages (TAMs). Similar findings were obtained in the mouse orthotopic GL261 GBM model, indicating that SIRPα is a potential target on GBM TAMs in mouse and human. A set of nanobodies, single-domain antibody fragments derived from camelid heavy chain-only antibodies, was generated against recombinant SIRPα and characterized in terms of affinity for the recombinant antigen and binding specificity on cells. Three selected nanobodies binding to mouse SIRPα were radiolabeled with 99mTc, injected in GL261 tumor-bearing mice and their biodistribution was evaluated using SPECT/CT imaging and radioactivity detection in dissected organs. Among these, Nb15 showed clear accumulation in peripheral organs such as spleen and liver, as well as a clear tumor uptake in comparison to a control non-targeting nanobody. A bivalent construct of Nb15 exhibited an increased accumulation in highly vascularized organs that express the target, such as spleen and liver, as compared to the monovalent format. However, penetration into the GL261 brain tumor fell back to levels detected with a non-targeting control nanobody. These results highlight the tumor penetration advantages of the small monovalent nanobody format and provide a qualitative proof-of-concept for using SIRPα-targeting nanobodies to noninvasively image myeloid cells in intracranial GBM tumors with high signal-to-noise ratios, even without blood-brain barrier permeabilization.


Immune stimulation recruits a subset of pro-regenerative macrophages to the retina that promotes axonal regrowth of injured neurons.

  • Lien Andries‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

The multifaceted nature of neuroinflammation is highlighted by its ability to both aggravate and promote neuronal health. While in mammals retinal ganglion cells (RGCs) are unable to regenerate following injury, acute inflammation can induce axonal regrowth. However, the nature of the cells, cellular states and signalling pathways that drive this inflammation-induced regeneration have remained elusive. Here, we investigated the functional significance of macrophages during RGC de- and regeneration, by characterizing the inflammatory cascade evoked by optic nerve crush (ONC) injury, with or without local inflammatory stimulation in the vitreous. By combining single-cell RNA sequencing and fate mapping approaches, we elucidated the response of retinal microglia and recruited monocyte-derived macrophages (MDMs) to RGC injury. Importantly, inflammatory stimulation recruited large numbers of MDMs to the retina, which exhibited long-term engraftment and promoted axonal regrowth. Ligand-receptor analysis highlighted a subset of recruited macrophages that exhibited expression of pro-regenerative secreted factors, which were able to promote axon regrowth via paracrine signalling. Our work reveals how inflammation may promote CNS regeneration by modulating innate immune responses, providing a rationale for macrophage-centred strategies for driving neuronal repair following injury and disease.


Transient and localized optogenetic activation of somatostatin-interneurons in mouse visual cortex abolishes long-term cortical plasticity due to vision loss.

  • Isabelle Scheyltjens‎ et al.
  • Brain structure & function‎
  • 2018‎

Unilateral vision loss through monocular enucleation (ME) results in partial reallocation of visual cortical territory to another sense in adult mice. The functional recovery of the visual cortex occurs through a combination of spared-eye potentiation and cross-modal reactivation driven by whisker-related, somatosensory inputs. Brain region-specific intracortical inhibition was recently recognized as a crucial regulator of the cross-modal component, yet the contribution of specific inhibitory neuron subpopulations remains poorly understood. Somatostatin (SST)-interneurons are ideally located within the cortical circuit to modulate sensory integration. Here we demonstrate that optogenetic stimulation of visual cortex SST-interneurons prior to eye removal decreases ME-induced cross-modal recovery at the stimulation site. Our results suggest that SST-interneurons act as local hubs, which are able to control the influx and extent of cortical cross-modal inputs into the deprived cortex. These insights critically expand our understanding of SST-interneuron-specific regulation of cortical plasticity induced by sensory loss.


Inflammasome signaling is dispensable for ß-amyloid-induced neuropathology in preclinical models of Alzheimer's disease.

  • Sahana Srinivasan‎ et al.
  • Frontiers in immunology‎
  • 2024‎

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting memory and cognition. The disease is accompanied by an abnormal deposition of ß-amyloid plaques in the brain that contributes to neurodegeneration and is known to induce glial inflammation. Studies in the APP/PS1 mouse model of ß-amyloid-induced neuropathology have suggested a role for inflammasome activation in ß-amyloid-induced neuroinflammation and neuropathology.


Single-cell RNA and protein profiling of immune cells from the mouse brain and its border tissues.

  • Isabelle Scheyltjens‎ et al.
  • Nature protocols‎
  • 2022‎

Brain-immune cross-talk and neuroinflammation critically shape brain physiology in health and disease. A detailed understanding of the brain immune landscape is essential for developing new treatments for neurological disorders. Single-cell technologies offer an unbiased assessment of the heterogeneity, dynamics and functions of immune cells. Here we provide a protocol that outlines all the steps involved in performing single-cell multi-omic analysis of the brain immune compartment. This includes a step-by-step description on how to microdissect the border regions of the mouse brain, together with dissociation protocols tailored to each of these tissues. These combine a high yield with minimal dissociation-induced gene expression changes. Next, we outline the steps involved for high-dimensional flow cytometry and droplet-based single-cell RNA sequencing via the 10x Genomics platform, which can be combined with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and offers a higher throughput than plate-based methods. Importantly, we detail how to implement CITE-seq with large antibody panels to obtain unbiased protein-expression screening coupled to transcriptome analysis. Finally, we describe the main steps involved in the analysis and interpretation of the data. This optimized workflow allows for a detailed assessment of immune cell heterogeneity and activation in the whole brain or specific border regions, at RNA and protein level. The wet lab workflow can be completed by properly trained researchers (with basic proficiency in cell and molecular biology) and takes between 6 and 11 h, depending on the chosen procedures. The computational analysis requires a background in bioinformatics and programming in R.


Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation.

  • Karen De Vlaminck‎ et al.
  • Immunity‎
  • 2022‎

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


A Tool for Brain-Wide Quantitative Analysis of Molecular Data upon Projection into a Planar View of Choice.

  • Samme Vreysen‎ et al.
  • Frontiers in neuroanatomy‎
  • 2017‎

Several techniques, allowing the reconstruction and visualization of functional, anatomical or molecular information from tissue and organ slices, have been developed over the years. Yet none allow direct comparison without reprocessing the same slices. Alternative methods using publicly available reference maps like the Allen Brain Atlas lack flexibility with respect to age and species. We propose a new approach to reconstruct a segmented region of interest from serial slices by projecting the optical density values representing a given molecular signal to a plane of view of choice, and to generalize the results into a reference map, which is built from the individual maps of all animals under study. Furthermore, to allow quantitative comparison between experimental conditions, a non-parametric pseudo t-test has been implemented. This new mapping tool was applied, optimized and validated making use of an in situ hybridization dataset that represents the spatiotemporal expression changes for the neuronal activity reporter gene zif268, in relation to cortical plasticity induced by monocular enucleation, covering the entire mouse visual cortex. The created top view maps of the mouse brain allow precisely delineating and interpreting 11 extrastriate areas surrounding mouse V1. As such, and because of the opportunity to create a planar projection of choice, these molecular maps can in the future easily be compared with functional or physiological imaging maps created with other techniques such as Ca2+, flavoprotein and optical imaging.


A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages.

  • Jung-Seok Kim‎ et al.
  • Immunity‎
  • 2021‎

The developmental and molecular heterogeneity of tissue macrophages is unravelling, as are their diverse contributions to physiology and pathophysiology. Moreover, also given tissues harbor macrophages in discrete anatomic locations. Functional contributions of specific cell populations can in mice be dissected using Cre recombinase-mediated mutagenesis. However, single promoter-based Cre models show limited specificity for cell types. Focusing on macrophages in the brain, we establish here a binary transgenic system involving complementation-competent NCre and CCre fragments whose expression is driven by distinct promoters: Sall1ncre: Cx3cr1ccre mice specifically target parenchymal microglia and compound transgenic Lyve1ncre: Cx3cr1ccre animals target vasculature-associated macrophages, in the brain, as well as other tissues. We imaged the respective cell populations and retrieved their specific translatomes using the RiboTag in order to define them and analyze their differential responses to a challenge. Collectively, we establish the value of binary transgenesis to dissect tissue macrophage compartments and their functions.


Comparative analysis of antibody- and lipid-based multiplexing methods for single-cell RNA-seq.

  • Viacheslav Mylka‎ et al.
  • Genome biology‎
  • 2022‎

Multiplexing of samples in single-cell RNA-seq studies allows a significant reduction of the experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or -lipids allow barcoding sample-specific cells, a process called "hashing."


Junctional adhesion molecule-A is dispensable for myeloid cell recruitment and diversification in the tumor microenvironment.

  • Máté Kiss‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Junctional adhesion molecule-A (JAM-A), expressed on the surface of myeloid cells, is required for extravasation at sites of inflammation and may also modulate myeloid cell activation. Infiltration of myeloid cells is a common feature of tumors that drives disease progression, but the function of JAM-A in this phenomenon and its impact on tumor-infiltrating myeloid cells is little understood. Here we show that systemic cancer-associated inflammation in mice enhanced JAM-A expression selectively on circulating monocytes in an IL1β-dependent manner. Using myeloid-specific JAM-A-deficient mice, we found that JAM-A was dispensable for recruitment of monocytes and other myeloid cells to tumors, in contrast to its reported role in inflammation. Single-cell RNA sequencing revealed that loss of JAM-A did not influence the transcriptional reprogramming of myeloid cells in the tumor microenvironment. Overall, our results support the notion that cancer-associated inflammation can modulate the phenotype of circulating immune cells, and we demonstrate that tumors can bypass the requirement of JAM-A for myeloid cell recruitment and reprogramming.


c-Fos expression following context conditioning and deep brain stimulation in the bed nucleus of the stria terminalis in rats.

  • Kelly Luyck‎ et al.
  • Scientific reports‎
  • 2020‎

Deep brain stimulation (DBS) in the bed nucleus of the stria terminalis (BST), a region implicated in the expression of anxiety, shows promise in psychiatric patients, but its effects throughout the limbic system are largely unknown. In male Wistar rats, we first evaluated the neural signature of contextual fear (N = 16) and next, of the anxiolytic effects of high-frequency electrical stimulation in the BST (N = 31), by means of c-Fos protein expression. In non-operated animals, we found that the left medial anterior BST displayed increased c-Fos expression in anxious (i.e., context-conditioned) versus control subjects. Moreover, control rats showed asymmetric expression in the basolateral amygdala (BLA) (i.e., higher intensities in the right hemisphere), which was absent in anxious animals. The predominant finding in rats receiving bilateral BST stimulation was a striking increase in c-Fos expression throughout much of the left hemisphere, which was not confined to the predefined regions of interest. To conclude, we found evidence for lateralized c-Fos expression during the expression of contextual fear and anxiolytic high-frequency electrical stimulation of the BST, particularly in the medial anterior BST and BLA. In addition, we observed an extensive and unexpected left-sided c-Fos spread following bilateral stimulation in the BST.


Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge.

  • Anat Shemer‎ et al.
  • Immunity‎
  • 2020‎

Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: