Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

NF-κB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells.

  • Kanae Echizen‎ et al.
  • Oncogene‎
  • 2019‎

We previously showed that NADPH oxidase organizer 1 (Noxo1), a component of NADPH oxidase 1 (NOX1), is a TNF-α-induced tumor-promoting factor in gastric tumorigenesis. However, the mechanism of NOX1-induced reactive oxygen species (ROS) signaling for the gastric tumorigenesis has not been understood. Here, we showed that expression of NOX1 complex components, including Noxo1, but not other NOX family members was significantly upregulated in both mouse models for gastritis and gastric tumors, which was associated with increased ROS levels. We also found that NF-κB directly regulated NOXO1 expression in TNF-α-stimulated gastric cancer cells, suggesting that inflammation induces NOX1 complex activation through TNF-α/NF-κB pathway. Notably, in situ hybridization indicated that Noxo1 mRNA was detected in proliferating cells of gastritis and gastric tumors, and pharmacological inhibition of NOX activity significantly suppressed the proliferation of MKN45 gastric cancer cells and gastric hyperplasia of K19-C2mE mice. These results suggest that NOX1/ROS signaling has an important role in increased proliferation of stomach epithelial cells in the inflamed mucosa. Moreover, we found that expression of SOX2, a marker of gastric epithelial stem cells, was increased by NOX1/ROS signaling. Furthermore, disruption of Noxo1 in K19-C2mE mice significantly suppressed gastritis-associated metaplastic hyperplasia, a potent preneoplastic lesion, which was associated with decreased number of SOX2-positive cells. These results indicate that inflammation-induced Noxo1 expression is responsible for development of metaplastic hyperplasia in the stomach through an increase in SOX2-expressing undifferentiated epithelial cells. Therefore, inhibition of the NOX1/ROS signaling pathway is a possible strategy for prevention and therapy for gastric cancer development.


Spred1 Safeguards Hematopoietic Homeostasis against Diet-Induced Systemic Stress.

  • Yuko Tadokoro‎ et al.
  • Cell stem cell‎
  • 2018‎

Stem cell self-renewal is critical for tissue homeostasis, and its dysregulation can lead to organ failure or tumorigenesis. While obesity can induce varied abnormalities in bone marrow components, it is unclear how diet might affect hematopoietic stem cell (HSC) self-renewal. Here, we show that Spred1, a negative regulator of RAS-MAPK signaling, safeguards HSC homeostasis in animals fed a high-fat diet (HFD). Under steady-state conditions, Spred1 negatively regulates HSC self-renewal and fitness, in part through Rho kinase activity. Spred1 deficiency mitigates HSC failure induced by infection mimetics and prolongs HSC lifespan, but it does not initiate leukemogenesis due to compensatory upregulation of Spred2. In contrast, HFD induces ERK hyperactivation and aberrant self-renewal in Spred1-deficient HSCs, resulting in functional HSC failure, severe anemia, and myeloproliferative neoplasm-like disease. HFD-induced hematopoietic abnormalities are mediated partly through alterations to the gut microbiota. Together, these findings reveal that diet-induced stress disrupts fine-tuning of Spred1-mediated signals to govern HSC homeostasis.


Requirement of SLD5 for early embryogenesis.

  • Tomomi Mohri‎ et al.
  • PloS one‎
  • 2013‎

SLD5 forms a GINS complex with PSF1, PSF2 and PSF3, which is essential for the initiation of DNA replication in lower eukaryotes. Although these components are conserved in mammals, their biological function is unclear. We show here that targeted disruption of SLD5 in mice causes a defect in cell proliferation in the inner cell mass, resulting in embryonic lethality at the peri-implantation stage, indicating that SLD5 is essential for embryogenesis. Moreover, this phenotype of SLD5 mutant mice is quite similar compared with that of PSF1 mutant mice. We have previously reported that haploinsufficiency of PSF1 resulted in failure of acute proliferation of bone marrow hematopoietic stem cells (HSCs) during reconstitution of bone marrow ablated by 5-FU treatment. Since SLD5 was highly expressed in bone marrow, we investigated its involvement in bone marrow reconstitution after bone marrow ablation as observed in PSF1 heterozygous mutant mice. However, heterozygous deletion of the SLD5 gene was found not to significantly affect bone marrow reconstitution. On the other hand, abundant SLD5 expression was observed in human cancer cell lines and heterozygous deletion of the gene attenuated tumor progression in a murine model of spontaneous gastric cancer. These indicated that requirement and dependency of SLD5 for cell proliferation is different in different cell types.


Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice.

  • Hiroko Oshima‎ et al.
  • The EMBO journal‎
  • 2004‎

Cyclooxygenase-2 (COX-2), the rate-limiting enzyme for prostanoid biosynthesis, plays a key role in gastrointestinal carcinogenesis. Among various prostanoids, prostaglandin E2 (PGE2) appears to be most responsible for cancer development. To investigate the role of PGE2 in gastric tumorigenesis, we constructed transgenic mice simultaneously expressing COX-2 and microsomal prostaglandin E synthase (mPGES)-1 in the gastric epithelial cells. The transgenic mice developed metaplasia, hyperplasia and tumorous growths in the glandular stomach with heavy macrophage infiltrations. Although gastric bacterial counts in the transgenic mice were within the normal range, treatment with antibiotics significantly suppressed activation of the macrophages and tumorous hyperplasia. Importantly, the antibiotics treatment did not affect the macrophage accumulation. Notably, treatment of the transgenic mice with lipopolysaccharides induced proinflammatory cytokines through Toll-like receptor 4 in the gastric epithelial cells. These results indicate that an increased level of PGE2 enhances macrophage infiltration, and that they are activated through epithelial cells by the gastric flora, resulting in gastric metaplasia and tumorous growth. Furthermore, Helicobacter infection upregulated epithelial PGE2 production, suggesting that the COX-2/mPGES-1 pathway contributes to the Helicobacter-associated gastric tumorigenesis.


Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer.

  • Hiraku Itadani‎ et al.
  • BMC genomics‎
  • 2009‎

Gastric cancers are generally classified into better differentiated intestinal-type tumor and poorly differentiated diffuse-type one according to Lauren's histological categorization. Although induction of prostaglandin E2 pathway promotes gastric tumors in mice in cooperation with deregulated Wnt or BMP signalings, it has remained unresolved whether the gastric tumor mouse models recapitulate either of human gastric cancer type. This study assessed the similarity in expression profiling between gastric tumors of transgenic mice and various tissues of human cancers to find best-fit human tumors for the transgenic mice models.


Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells.

  • Keisuke Oguma‎ et al.
  • The EMBO journal‎
  • 2008‎

The activation of Wnt/beta-catenin signalling has an important function in gastrointestinal tumorigenesis. It has been suggested that the promotion of Wnt/beta-catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in the promotion of Wnt/beta-catenin activity in gastric tumorigenesis. We found beta-catenin nuclear accumulation in macrophage-infiltrated dysplastic mucosa of the K19-Wnt1 mouse stomach. Moreover, macrophage depletion in Apc(Delta716) mice resulted in the suppression of intestinal tumorigenesis. These results suggested the role of macrophages in the activation of Wnt/beta-catenin signalling, which thus leads to tumour development. Importantly, the conditioned medium of activated macrophages promoted Wnt/beta-catenin signalling in gastric cancer cells, which was suppressed by the inhibition of tumour necrosis factor (TNF)-alpha. Furthermore, treatment with TNF-alpha induced glycogen synthase kinase 3beta (GSK3beta) phosphorylation, which resulted in the stabilization of beta-catenin. We also found that Helicobacter infection in the K19-Wnt1 mouse stomach caused mucosal macrophage infiltration and nuclear beta-catenin accumulation. These results suggest that macrophage-derived TNF-alpha promotes Wnt/beta-catenin signalling through inhibition of GSK3beta, which may contribute to tumour development in the gastric mucosa.


Toll-like Receptor 9 Promotes Initiation of Gastric Tumorigenesis by Augmenting Inflammation and Cellular Proliferation.

  • Ke Tang‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection.


Gain-of-Function p53 Mutation Acts as a Genetic Switch for TGFβ Signaling-Induced Epithelial-to-Mesenchymal Transition in Intestinal Tumors.

  • Dong Wang‎ et al.
  • Cancer research‎
  • 2024‎

Signaling by TGFβ family cytokines plays a tumor-suppressive role by inducing cell differentiation, while it promotes malignant progression through epithelial-to-mesenchymal transition (EMT). Identification of the mechanisms regulating the switch from tumor suppression to tumor promotion could identify strategies for cancer prevention and treatment. To identify the key genetic alterations that determine the outcome of TGFβ signaling, we used mouse intestinal tumor-derived organoids carrying multiple driver mutations in various combinations to examine the relationship between genotypes and responses to the TGFβ family cytokine activin A. KrasG12D mutation protected organoid cells from activin A-induced growth suppression by inhibiting p21 and p27 expression. Furthermore, Trp53R270H gain-of-function (GOF) mutation together with loss of wild-type Trp53 by loss of heterozygosity (LOH) promoted activin A-induced partial EMT with formation of multiple protrusions on the organoid surface, which was associated with increased metastatic incidence. Histologic analysis confirmed that tumor cells at the protrusions showed loss of apical-basal polarity and glandular structure. RNA sequencing analysis indicated that expression of Hmga2, encoding a cofactor of the SMAD complex that induces EMT transcription factors, was significantly upregulated in organoids with Trp53 GOF/LOH alterations. Importantly, loss of HMGA2 suppressed expression of Twist1 and blocked activin A-induced partial EMT and metastasis in Trp53 GOF/LOH organoids. These results indicate that TP53 GOF/LOH is a key genetic state that primes for TGFβ family-induced partial EMT and malignant progression of colorectal cancer. Activin signaling may be an effective therapeutic target for colorectal cancer harboring TP53 GOF mutations.


Interleukin 1 Up-regulates MicroRNA 135b to Promote Inflammation-Associated Gastric Carcinogenesis in Mice.

  • Tae-Su Han‎ et al.
  • Gastroenterology‎
  • 2019‎

Gastritis is associated with development of stomach cancer, but little is known about changes in microRNA expression patterns during gastric inflammation. Specific changes in gene expression in epithelial cells are difficult to monitor because of the heterogeneity of the tissue. We investigated epithelial cell-specific changes in microRNA expression during gastric inflammation and gastritis-associated carcinogenesis in mice.


Dipeptide species regulate p38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells.

  • Kazuhito Naka‎ et al.
  • Nature communications‎
  • 2015‎

Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK-Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment.


ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles.

  • Yoshihiko Shimizu‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Rho-associated kinase (ROCK) I mediates signaling from Rho to the actin cytoskeleton. To investigate the in vivo functions of ROCK-I, we generated ROCK-I-deficient mice. Loss of ROCK-I resulted in failure of eyelid closure and closure of the ventral body wall, which gave rise to the eyes open at birth and omphalocele phenotypes in neonates. Most ROCK-I(-/-) mice died soon after birth as a result of cannibalization of the omphalocele by the mother. Actin cables that encircle the eye in the epithelial cells of the eyelid were disorganized and accumulation of filamentous actin at the umbilical ring was impaired, with loss of phosphorylation of the myosin regulatory light chain (MLC) at both sites, in ROCK-I(-/-) embryos. Stress fiber formation and MLC phosphorylation induced by EGF were also attenuated in primary keratinocytes from ROCK-I(-/-) mice. These results suggest that ROCK-I regulates closure of the eyelids and ventral body wall through organization of actomyosin bundles.


Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells.

  • Kee Siang Lim‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11-7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.


Autophagy regulates levels of tumor suppressor enzyme protein phosphatase 6.

  • Nobuyuki Fujiwara‎ et al.
  • Cancer science‎
  • 2020‎

Protein phosphatase 6 (PP6) is an essential serine/threonine protein phosphatase that acts as an important tumor suppressor. However, increased protein levels of PP6 have been observed in some cancer types, and they correlate with poor prognosis in glioblastoma. This raises a question about how PP6 protein levels are regulated in normal and transformed cells. In this study, we show that PP6 protein levels increase in response to pharmacologic and genetic inhibition of autophagy. PP6 associates with autophagic adaptor protein p62/SQSTM1 and is degraded in a p62-dependent manner. Accordingly, protein levels of PP6 and p62 fluctuate in concert under different physiological and pathophysiological conditions. Our data reveal that PP6 is regulated by p62-dependent autophagy and suggest that accumulation of PP6 protein in tumor tissues is caused at least partially by deficiency in autophagy.


Stat3 is indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal tumorigenesis.

  • Hiroko Oshima‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2019‎

Signal transducer and activator of transcription 3 (Stat3) has been shown to play a role in intestinal regeneration and colitis-associated colon carcinogenesis. However, the role of Stat3 in the Wnt-driven sporadic intestinal tumorigenesis remains poorly understood. We examined the roles of Stat3 in intestinal regeneration and tumorigenesis by organoid culture experiments using Stat3∆IEC mouse-derived intestinal epithelial cells in which Stat3 was disrupted. The regeneration of intestinal mucosa and organoid formation were significantly suppressed by Stat3 disruption, which was compensated by Wnt activation. Furthermore, once organoids were recovered, Stat3 was no longer required for organoid growth. These results indicate that Stat3 and Wnt signaling cooperatively protect epithelial cells at the early phase of intestinal regeneration. In contrast, intestinal tumorigenesis was not suppressed by Stat3 disruption in adenomatous polyposis coli ( Apc) Δ716 and Apc∆716 Tgfbr2∆IEC mice, thus indicating that Stat3 is not required for Wnt activation-driven intestinal tumorigenesis. Mechanistically, Itga5 and Itga6 were down-regulated by Stat3 disruption, and focal adhesion kinase (FAK) activation was also suppressed. Notably, FAK inhibitor suppressed the organoid formation of wild-type epithelial cells. These results indicate that Stat3 is indispensable for the survival of epithelial cells through the activation of integrin signaling and the downstream FAK pathway; however, it is not required for the Wnt signaling-activated normal or tumor epithelial cells.-Oshima, H., Kok, S.-Y., Nakayama, M., Murakami, K., Voon, D. C.-C., Kimura, T., Oshima, M. Stat3 is indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal tumorigenesis.


Suppressing TGFβ signaling in regenerating epithelia in an inflammatory microenvironment is sufficient to cause invasive intestinal cancer.

  • Hiroko Oshima‎ et al.
  • Cancer research‎
  • 2015‎

Genetic alterations in the TGFβ signaling pathway in combination with oncogenic alterations lead to cancer development in the intestines. However, the mechanisms of TGFβ signaling suppression in malignant progression of intestinal tumors have not yet been fully understood. We have examined Apc(Δ716) Tgfbr2(ΔIEC) compound mutant mice that carry mutations in Apc and Tgfbr2 genes in the intestinal epithelial cells. We found inflammatory microenvironment only in the invasive intestinal adenocarcinomas but not in noninvasive benign polyps of the same mice. We thus treated simple Tgfbr2(ΔIEC) mice with dextran sodium sulfate (DSS) that causes ulcerative colitis. Importantly, these Tgfbr2(ΔIEC) mice developed invasive colon cancer associated with chronic inflammation. We also found that TGFβ signaling is suppressed in human colitis-associated colon cancer cells. In the mouse invasive tumors, macrophages infiltrated and expressed MT1-MMP, causing MMP2 activation. These results suggest that inflammatory microenvironment contributes to submucosal invasion of TGFβ signaling-repressed epithelial cells through activation of MMP2. We further found that regeneration was impaired in Tgfbr2(ΔIEC) mice for intestinal mucosa damaged by DSS treatment or X-ray irradiation, resulting in the expansion of undifferentiated epithelial cell population. Moreover, organoids of intestinal epithelial cells cultured from irradiated Tgfbr2(ΔIEC) mice formed "long crypts" in Matrigel, suggesting acquisition of an invasive phenotype into the extracellular matrix. These results, taken together, indicate that a simple genetic alteration in the TGFβ signaling pathway in the inflamed and regenerating intestinal mucosa can cause invasive intestinal tumors. Such a mechanism may play a role in the colon carcinogenesis associated with inflammatory bowel disease in humans.


Hyperactive gp130/STAT3-driven gastric tumourigenesis promotes submucosal tertiary lymphoid structure development.

  • David G Hill‎ et al.
  • International journal of cancer‎
  • 2018‎

Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F ) of gastric cancer, where tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gastric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing CD21+ cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interestingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in patients, it did not indicate a favourable prognosis.


Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers.

  • Junko Ohtsuka‎ et al.
  • Scientific reports‎
  • 2018‎

p53 mutations are frequently detected in malignant gastric cancers. However, the molecular mechanisms by which loss of p53 function promotes gastric cancer are not clear. We utilized Gan mice (K19-Wnt1/C2mE), which have functional p53 and develop intestinal-type gastric tumors, to investigate the role of p53 in gastric cancer progression by knocking out p53. We found that gastric epithelial cells acquire tumorigenicity in the subcutis of C57BL/6 mice as a result of Wnt activation, COX-2 activation and p53 deficiency. With repeated allograft transfers, these gastric epithelial cells gradually acquired the properties of malignant gastric cancer. Loss of p53 conferred cell stemness and induced epithelial to mesenchymal transition (EMT) in gastric epithelial cells, and these properties were further enhanced by the in vivo microenvironment, ultimately leading to gastric cancer formation and metastasis. We also found that the in vivo microenvironment enhanced activation of the COX-2 pathway, which further contributed to cancer progression. With this system, we have succeeded in recapitulating the development of malignant gastric cancer from gastric epithelial cells in a normal immune environment.


CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth.

  • Takatsugu Ishimoto‎ et al.
  • Cancer cell‎
  • 2011‎

CD44 is an adhesion molecule expressed in cancer stem-like cells. Here, we show that a CD44 variant (CD44v) interacts with xCT, a glutamate-cystine transporter, and controls the intracellular level of reduced glutathione (GSH). Human gastrointestinal cancer cells with a high level of CD44 expression showed an enhanced capacity for GSH synthesis and defense against reactive oxygen species (ROS). Ablation of CD44 induced loss of xCT from the cell surface and suppressed tumor growth in a transgenic mouse model of gastric cancer. It also induced activation of p38(MAPK), a downstream target of ROS, and expression of the gene for the cell cycle inhibitor p21(CIP1/WAF1). These findings establish a function for CD44v in regulation of ROS defense and tumor growth.


Distinct Localization of Mature HGF from its Precursor Form in Developing and Repairing the Stomach.

  • Nawaphat Jangphattananont‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Hepatocyte growth factor (HGF) is secreted as an inactive single-chain HGF (scHGF); however, only proteolytically processed two-chain HGF (tcHGF) can activate the MET receptor. We investigated the localization of tcHGF and activated/phosphorylated MET (pMET) using a tcHGF-specific antibody. In day 16.5 mouse embryos, total HGF (scHGF + tcHGF) was mainly localized in smooth muscle cells close to, but separate from, MET-positive epithelial cells in endodermal organs, including the stomach. In the adult stomach, total HGF was localized in smooth muscle cells, and tcHGF was mainly localized in the glandular base region. Immunostaining for pMET and Lgr5-driven green fluorescent protein (GFP) indicated that pMET localization overlapped with Lgr5+ gastric stem cells. HGF promoted organoid formation similar to EGF, indicating the potential for HGF to promote the survival and growth of gastric stem cells. pMET and tcHGF localizations changed during regeneration following gastric injury. These results indicate that MET is constantly activated in gastric stem cells and that the localization of pMET differs from the primary localization of precursor HGF but has a close relationship to tcHGF. Our results suggest the importance of the microenvironmental generation of tcHGF in the regulation of development, regeneration, and stem cell behavior.


Loss of wild-type p53 promotes mutant p53-driven metastasis through acquisition of survival and tumor-initiating properties.

  • Mizuho Nakayama‎ et al.
  • Nature communications‎
  • 2020‎

Missense-type mutant p53 plays a tumor-promoting role through gain-of-function (GOF) mechanism. In addition, the loss of wild-type TP53 through loss of heterozygosity (LOH) is widely found in cancer cells. However, malignant progression induced by cooperation of TP53 GOF mutation and LOH remains poorly understood. Here, we show that mouse intestinal tumors carrying Trp53 GOF mutation with LOH (AKTPM/LOH) are enriched in metastatic lesions when heterozygous Trp53 mutant cells (AKTP+/M) are transplanted. We show that Trp53 LOH is required for dormant cell survival and clonal expansion of cancer cells. Moreover, AKTPM/LOH cells show an increased in vivo tumor-initiating ability compared with AKTPNull and AKTP+/M cells. RNAseq analyses reveal that inflammatory and growth factor/MAPK pathways are specifically activated in AKTPM/LOH cells, while the stem cell signature is upregulated in both AKTPM/LOH and AKTPNull cells. These results indicate that TP53/Trp53 LOH promotes TP53/Trp53 GOF mutation-driven metastasis through the activation of distinct pathway combination.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: