Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice.

  • Martina Chrisam‎ et al.
  • Autophagy‎
  • 2015‎

Autophagy is a self-degradative process responsible for the clearance of damaged or unnecessary cellular components. We have previously found that persistence of dysfunctional organelles due to autophagy failure is a key event in the pathogenesis of COL6/collagen VI-related myopathies, and have demonstrated that reactivation of a proper autophagic flux rescues the muscle defects of Col6a1-null (col6a1(-/-)) mice. Here we show that treatment with spermidine, a naturally occurring nontoxic autophagy inducer, is beneficial for col6a1(-/-) mice. Systemic administration of spermidine in col6a1(-/-) mice reactivated autophagy in a dose-dependent manner, leading to a concurrent amelioration of the histological and ultrastructural muscle defects. The beneficial effects of spermidine, together with its being easy to administer and the lack of overt side effects, open the field for the design of novel nutraceutical strategies for the treatment of muscle diseases characterized by autophagy impairment.


Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon Mitochondrial Stress in C. elegans.

  • Alfonso Schiavi‎ et al.
  • Current biology : CB‎
  • 2015‎

Frataxin is a nuclear-encoded mitochondrial protein involved in the biogenesis of Fe-S-cluster-containing proteins and consequently in the functionality of the mitochondrial respiratory chain. Similar to other proteins that regulate mitochondrial respiration, severe frataxin deficiency leads to pathology in humans--Friedreich's ataxia, a life-threatening neurodegenerative disorder--and to developmental arrest in the nematode C. elegans. Interestingly, partial frataxin depletion extends C. elegans lifespan, and a similar anti-aging effect is prompted by reduced expression of other mitochondrial regulatory proteins from yeast to mammals. The beneficial adaptive responses to mild mitochondrial stress are still largely unknown and, if characterized, may suggest novel potential targets for the treatment of human mitochondria-associated, age-related disorders. Here we identify mitochondrial autophagy as an evolutionarily conserved response to frataxin silencing, and show for the first time that, similar to mammals, mitophagy is activated in C. elegans in response to mitochondrial stress in a pdr-1/Parkin-, pink-1/Pink-, and dct-1/Bnip3-dependent manner. The induction of mitophagy is part of a hypoxia-like, iron starvation response triggered upon frataxin depletion and causally involved in animal lifespan extension. We also identify non-overlapping hif-1 upstream (HIF-1-prolyl-hydroxylase) and downstream (globins) regulatory genes mediating lifespan extension upon frataxin and iron depletion. Our findings indicate that mitophagy induction is part of an adaptive iron starvation response induced as a protective mechanism against mitochondrial stress, thus suggesting novel potential therapeutic strategies for the treatment of mitochondrial-associated, age-related disorders.


Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance.

  • Noemi Poerio‎ et al.
  • Scientific reports‎
  • 2017‎

Phagocytosis is a key mechanism of innate immunity, and promotion of phagosome maturation may represent a therapeutic target to enhance antibacterial host response. Phagosome maturation is favored by the timely and coordinated intervention of lipids and may be altered in infections. Here we used apoptotic body-like liposomes (ABL) to selectively deliver bioactive lipids to innate cells, and then tested their function in models of pathogen-inhibited and host-impaired phagosome maturation. Stimulation of macrophages with ABLs carrying phosphatidic acid (PA), phosphatidylinositol 3-phosphate (PI3P) or PI5P increased intracellular killing of BCG, by inducing phagosome acidification and ROS generation. Moreover, ABLs carrying PA or PI5P enhanced ROS-mediated intracellular killing of Pseudomonas aeruginosa, in macrophages expressing a pharmacologically-inhibited or a naturally-mutated cystic fibrosis transmembrane conductance regulator. Finally, we show that bronchoalveolar lavage cells from patients with drug-resistant pulmonary infections increased significantly their capacity to kill in vivo acquired bacterial pathogens when ex vivo stimulated with PA- or PI5P-loaded ABLs. Altogether, these results provide the proof of concept of the efficacy of bioactive lipids delivered by ABL to enhance phagosome maturation dependent antimicrobial response, as an additional host-directed strategy aimed at the control of chronic, recurrent or drug-resistant infections.


Very mild isolated intellectual disability caused by adenylosuccinate lyase deficiency: a new phenotype.

  • Marina Macchiaiolo‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2020‎

Adenylosuccinate lyase deficiency is a rare neurometabolic recessive disorder of purine metabolism characterized by a wide range of clinical manifestations. We present a very mild phenotype of two siblings characterized by mild isolated cognitive disability, in absence of brain anomalies, seizures, EEG anomalies and without progression of disease. The two patients had unsuccessfully been investigated until clinical exome was performed. In both siblings, compound heterozygosity for two inherited missense variants in ADSL gene, c.76A>T (p.Met26Leu) and c.1187G>A (p.Arg396His), were detected. Analysis of the catabolic pathway of autophagy on EBV-transformed B lymphoblastoid cell derived from the male patient excluded the presence of any autophagy alterations at the basal level. Further studies are necessary to understand the pathogenesis of the disease and to elucidate the potential role of autophagy in the development of ADSL deficiency.


The Cancermuts software package for the prioritization of missense cancer variants: a case study of AMBRA1 in melanoma.

  • Matteo Tiberti‎ et al.
  • Cell death & disease‎
  • 2022‎

Cancer genomics and cancer mutation databases have made an available wealth of information about missense mutations found in cancer patient samples. Contextualizing by means of annotation and predicting the effect of amino acid change help identify which ones are more likely to have a pathogenic impact. Those can be validated by means of experimental approaches that assess the impact of protein mutations on the cellular functions or their tumorigenic potential. Here, we propose the integrative bioinformatic approach Cancermuts, implemented as a Python package. Cancermuts is able to gather known missense cancer mutations from databases such as cBioPortal and COSMIC, and annotate them with the pathogenicity score REVEL as well as information on their source. It is also able to add annotations about the protein context these mutations are found in, such as post-translational modification sites, structured/unstructured regions, presence of short linear motifs, and more. We applied Cancermuts to the intrinsically disordered protein AMBRA1, a key regulator of many cellular processes frequently deregulated in cancer. By these means, we classified mutations of AMBRA1 in melanoma, where AMBRA1 is highly mutated and displays a tumor-suppressive role. Next, based on REVEL score, position along the sequence, and their local context, we applied cellular and molecular approaches to validate the predicted pathogenicity of a subset of mutations in an in vitro melanoma model. By doing so, we have identified two AMBRA1 mutations which show enhanced tumorigenic potential and are worth further investigation, highlighting the usefulness of the tool. Cancermuts can be used on any protein targets starting from minimal information, and it is available at https://www.github.com/ELELAB/cancermuts as free software.


A cross-sectional and prospective cohort study of the role of schools in the SARS-CoV-2 second wave in Italy.

  • Sara Gandini‎ et al.
  • The Lancet regional health. Europe‎
  • 2021‎

During COVID-19 pandemic, school closure has been mandated in analogy to its effect against influenza, but it is unclear whether schools are early COVID-19 amplifiers.


Age related retinal Ganglion cell susceptibility in context of autophagy deficiency.

  • Katharina Bell‎ et al.
  • Cell death discovery‎
  • 2020‎

Glaucoma is a common age-related disease leading to progressive retinal ganglion cell (RGC) death, visual field defects and vision loss and is the second leading cause of blindness in the elderly worldwide. Mitochondrial dysfunction and impaired autophagy have been linked to glaucoma and induction of autophagy shows neuroprotective effects in glaucoma animal models. We have shown that autophagy decreases with aging in the retina and that autophagy can be neuroprotective for RGCs, but it is currently unknown how aging and autophagy deficiency impact RGCs susceptibility and survival. Using the optic nerve crush model in young and olWelcome@1234d Ambra1 +/gt (autophagy/beclin-1 regulator 1+/gt) mice we analysed the contribution of autophagy deficiency on retinal ganglion cell survival in an age dependent context. Interestingly, old Ambra1 +/gt mice showed decreased RGC survival after optic nerve crush in comparison to old Ambra1 +/+, an effect that was not observed in the young animals. Proteomics and mRNA expression data point towards altered oxidative stress response and mitochondrial alterations in old Ambra1 +/gt animals. This effect is intensified after RGC axonal damage, resulting in reduced oxidative stress response showing decreased levels of Nqo1, as well as failure of Nrf2 induction in the old Ambra1 +/gt. Old Ambra1 +/gt also failed to show increase in Bnip3l and Bnip3 expression after optic nerve crush, a response that is found in the Ambra1 +/+ controls. Primary RGCs derived from Ambra1 +/gt mice show decreased neurite projection and increased levels of apoptosis in comparison to Ambra1 +/+ animals. Our results lead to the conclusion that oxidative stress response pathways are altered in old Ambra1 +/gt mice leading to impaired damage responses upon additional external stress factors.


Ambra1 deficiency impairs mitophagy in skeletal muscle.

  • Lisa Gambarotto‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2022‎

Maintaining healthy mitochondria is mandatory for muscle viability and function. An essential surveillance mechanism targeting defective and harmful mitochondria to degradation is the selective form of autophagy called mitophagy. Ambra1 is a multifaceted protein with well-known autophagic and mitophagic functions. However, the study of its role in adult tissues has been extremely limited due to the embryonic lethality caused by full-body Ambra1 deficiency.


AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation.

  • Fiorella Faienza‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.


Zebrafish ambra1b knockout reveals a novel role for Ambra1 in primordial germ cells survival, sex differentiation and reproduction.

  • Camilla Maria Fontana‎ et al.
  • Biological research‎
  • 2023‎

AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population.


Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites.

  • Søs Grønbæk Holdgaard‎ et al.
  • Nature communications‎
  • 2019‎

The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy. Autophagy targets the satellite organizer PCM1 by interacting with GABARAPs via a C-terminal LIR motif. Accordingly, autophagy deficiency results in accumulation of large abnormal centriolar satellites and a resultant dysregulation of centrosome composition. These alterations have critical impact on centrosome stability and lead to mitotic centrosome fragmentation and unbalanced chromosome segregation. Our findings identify doryphagy as an important centrosome-regulating pathway and bring mechanistic insights to the link between autophagy dysfunction and chromosomal instability. In addition, we highlight the vital role of centriolar satellites in maintaining centrosome integrity.


S-Nitrosoglutathione Reductase Plays Opposite Roles in SH-SY5Y Models of Parkinson's Disease and Amyotrophic Lateral Sclerosis.

  • Salvatore Rizza‎ et al.
  • Mediators of inflammation‎
  • 2015‎

Oxidative and nitrosative stresses have been reported as detrimental phenomena concurring to the onset of several neurodegenerative diseases. Here we reported that the ectopic modulation of the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR) differently impinges on the phenotype of two SH-SY5Y-based in vitro models of neurodegeneration, namely, Parkinson's disease (PD) and familial amyotrophic lateral sclerosis (fALS). In particular, we provide evidence that GSNOR-knocking down protects SH-SY5Y against PD toxins, while, by contrast, its upregulation is required for G93A-SOD1 expressing cells resistance to NO-releasing drugs. Although completely opposite, both conditions are characterized by Nrf2 localization in the nuclear compartment: in the first case induced by GSNOR silencing, while in the second one underlying the antinitrosative response. Overall, our results demonstrate that GSNOR expression has different effect on neuronal viability in dependence on the stimulus applied and suggest that GSNOR could be a responsive gene downstream of Nrf2 activation.


AMBRA1-Mediated Mitophagy Counteracts Oxidative Stress and Apoptosis Induced by Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells.

  • Anthea Di Rita‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Therapeutic strategies are needed to protect dopaminergic neurons in Parkinson's disease (PD) patients. Oxidative stress caused by dopamine may play an important role in PD pathogenesis. Selective autophagy of mitochondria (mitophagy), mainly regulated by PINK1 and PARKIN, plays an important role in the maintenance of cell homeostasis. Mutations in those genes cause accumulation of damaged mitochondria, leading to nigral degeneration and early-onset PD. AMBRA1ActA is a fusion protein specifically expressed at the mitochondria, and whose expression has been shown to induce a powerful mitophagy in mammalian cells. Most importantly, the pro-autophagy factor AMBRA1 is sufficient to restore mitophagy in fibroblasts of PD patients carrying PINK1 and PARKIN mutations. In this study, we investigated the potential neuroprotective effect of AMBRA1-induced mitophagy against 6-hydroxydopamine (6-OHDA)- and rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We demonstrated that AMBRA1ActA overexpression was sufficient to induce mitochondrial clearance in SH-SY5Y cells. We found that apoptosis induced by 6-OHDA and rotenone was reversed by AMBRA1-induced mitophagy. Finally, transfection of SH-SY5Y cells with a vector encoding AMBRA1ActA significantly reduced 6-OHDA and rotenone-induced generation of reactive oxygen species (ROS). Altogether, our results indicate that AMBRA1ActA is able to induce mitophagy in SH-SY5Y cells in order to suppress oxidative stress and apoptosis induced by both 6-OHDA and rotenone. These results strongly suggest that AMBRA1 may have promising neuroprotective properties with an important role in limiting ROS-induced dopaminergic cell death, and the utmost potential to prevent PD or other neurodegenerative diseases associated with mitochondrial oxidative stress.


Prolonged Pseudohypoxia Targets Ambra1 mRNA to P-Bodies for Translational Repression.

  • Somayeh Pourpirali‎ et al.
  • PloS one‎
  • 2015‎

Hypoxia has been associated with several pathological conditions ranging from stroke to cancer. This condition results in the activation of autophagy, a cyto-protective response involving the formation of double-membraned structures, the autophagosomes, in the cytoplasm. In this study, we investigated the cellular mechanisms regulating the autophagy gene Ambra1, after exposure to a hypoxia mimetic, cobalt chloride (CoCl2). We observed that, upon CoCl2 administration, activation of the apoptotic machinery was concomitant with down-regulation of the pro-autophagic factor Ambra1, without affecting transcription. Additionally, co-treating the cells with the caspase inhibitor z-VAD-FMK did not restore Ambra1 protein levels, this implying the involvement of other regulatory mechanisms. Partial re-localization of Ambra1 mRNA to non-translating fractions and cytoplasmic P-bodies was further detected. Thus, in this pseudohypoxic context, Ambra1 mRNA translocation to P-bodies and translational suppression correlated with increased cell death.


Loss of Ambra1 promotes melanoma growth and invasion.

  • Luca Di Leo‎ et al.
  • Nature communications‎
  • 2021‎

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.


c-FLIP regulates autophagy by interacting with Beclin-1 and influencing its stability.

  • Luana Tomaipitinca‎ et al.
  • Cell death & disease‎
  • 2021‎

c-FLIP (cellular FLICE-like inhibitory protein) protein is mostly known as an apoptosis modulator. However, increasing data underline that c-FLIP plays multiple roles in cellular homoeostasis, influencing differently the same pathways depending on its expression level and isoform predominance. Few and controversial data are available regarding c-FLIP function in autophagy. Here we show that autophagic flux is less effective in c-FLIP-/- than in WT MEFs (mouse embryonic fibroblasts). Indeed, we show that the absence of c-FLIP compromises the expression levels of pivotal factors in the generation of autophagosomes. In line with the role of c-FLIP as a scaffold protein, we found that c-FLIPL interacts with Beclin-1 (BECN1: coiled-coil, moesin-like BCL2-interacting protein), which is required for autophagosome nucleation. By a combination of bioinformatics tools and biochemistry assays, we demonstrate that c-FLIPL interaction with Beclin-1 is important to prevent Beclin-1 ubiquitination and degradation through the proteasomal pathway. Taken together, our data describe a novel molecular mechanism through which c-FLIPL positively regulates autophagy, by enhancing Beclin-1 protein stability.


Chemogenetic rectification of the inhibitory tone onto hippocampal neurons reverts autistic-like traits and normalizes local expression of estrogen receptors in the Ambra1+/- mouse model of female autism.

  • Annabella Pignataro‎ et al.
  • Translational psychiatry‎
  • 2023‎

Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.


AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis.

  • Juliane Becher‎ et al.
  • Developmental cell‎
  • 2018‎

Regulatory T cells (Treg) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of Treg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human Treg differentiation and maintenance. Indeed, through its ability to interact with the phosphatase PP2A, AMBRA1 promotes the stability of the transcriptional activator FOXO3, which, in turn, triggers FOXP3 transcription. Furthermore, we found that AMBRA1 plays a significant role in vivo by regulating Treg cell induction in mouse models of both tumor growth and multiple sclerosis, thus highlighting the role of AMBRA1 in the control of immune homeostasis.


Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival.

  • Rossella Russo‎ et al.
  • Cell death & disease‎
  • 2018‎

Autophagy, the cellular process responsible for degradation and recycling of cytoplasmic components through the autophagosomal-lysosomal pathway, is fundamental for neuronal homeostasis and its deregulation has been identified as a hallmark of neurodegeneration. Retinal hypoxic-ischemic events occur in several sight-treating disorders, such as central retinal artery occlusion, diabetic retinopathy, and glaucoma, leading to degeneration and loss of retinal ganglion cells. Here we analyzed the autophagic response in the retinas of mice subjected to ischemia induced by transient elevation of intraocular pressure, reporting a biphasic and reperfusion time-dependent modulation of the process. Ischemic insult triggered in the retina an acute induction of autophagy that lasted during the first hours of reperfusion. This early upregulation of the autophagic flux limited RGC death, as demonstrated by the increased neuronal loss observed in mice with genetic impairment of basal autophagy owing to heterozygous ablation of the autophagy-positive modulator Ambra1 (Ambra1+/gt). Upregulation of autophagy was exhausted 24 h after the ischemic event and reduced autophagosomal turnover was associated with build up of the autophagic substrate SQSTM-1/p62, decreased ATG12-ATG5 conjugate, ATG4 and BECN1/Beclin1 expression. Animal fasting or subchronic systemic treatment with rapamycin sustained and prolonged autophagy activation and improved RGC survival, providing proof of principle for autophagy induction as a potential therapeutic strategy in retinal neurodegenerative conditions associated with hypoxic/ischemic stresses.


The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy.

  • Sabrina Di Bartolomeo‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Autophagy is an evolutionary conserved catabolic process involved in several physiological and pathological processes such as cancer and neurodegeneration. Autophagy initiation signaling requires both the ULK1 kinase and the BECLIN 1-VPS34 core complex to generate autophagosomes, double-membraned vesicles that transfer cellular contents to lysosomes. In this study, we show that the BECLIN 1-VPS34 complex is tethered to the cytoskeleton through an interaction between the BECLIN 1-interacting protein AMBRA1 and dynein light chains 1/2. When autophagy is induced, ULK1 phosphorylates AMBRA1, releasing the autophagy core complex from dynein. Its subsequent relocalization to the endoplasmic reticulum enables autophagosome nucleation. Therefore, AMBRA1 constitutes a direct regulatory link between ULK1 and BECLIN 1-VPS34, which is required for core complex positioning and activity within the cell. Moreover, our results demonstrate that in addition to a function for microtubules in mediating autophagosome transport, there is a strict and regulatory relationship between cytoskeleton dynamics and autophagosome formation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: