Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Out with the Old and in with the New--Is Backward Inhibition a Domain-Specific Process?

  • Francesca Foti‎ et al.
  • PloS one‎
  • 2015‎

Effective task switching is supported by the inhibition of the just executed task, so that potential interference from previously executed tasks is adaptively counteracted. This inhibitory mechanism, named Backward Inhibition (BI), has been inferred from the finding that switching back to a recently executed task (A-B-A task sequence) is harder than switching back to a less recently executed task (C-B-A task sequence). Despite the fact that BI effects do impact performance on everyday life activities, up to now it is still not clear whether the BI represents an amodal and material-independent process or whether it interacts with the task material. To address this issue, a group of individuals with Williams syndrome (WS) characterized by specific difficulties in maintaining and processing visuo-spatial, but not verbal, information, and a mental age- and gender-matched group of typically developing (TD) children were subjected to three task-switching experiments requiring verbal or visuo-spatial material to be processed. Results showed that individuals with WS exhibited a normal BI effect during verbal task-switching, but a clear deficit during visuo-spatial task-switching. Overall, our findings demonstrating that the BI is a material-specific process have important implications for theoretical models of cognitive control and its architecture.


Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition?

  • Francesca Foti‎ et al.
  • Frontiers in psychology‎
  • 2015‎

Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities.


Influence of Pre-reproductive Maternal Enrichment on Coping Response to Stress and Expression of c-Fos and Glucocorticoid Receptors in Adolescent Offspring.

  • Debora Cutuli‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2017‎

Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress.


Monoclonal antibodies to 65kDa glutamate decarboxylase induce epitope specific effects on motor and cognitive functions in rats.

  • Christiane S Hampe‎ et al.
  • Orphanet journal of rare diseases‎
  • 2013‎

Stiff Person Syndrome (SPS) is a rare autoimmune movement disorder characterized by the presence of autoantibodies specific to the smaller isoform of glutamate decarboxylase (GAD65). A pathological role of these antibodies has been suggested by their capacity to inhibit GAD65 enzyme activity and by the observation that rats receiving cerebellar injections of GAD65Ab showed cerebellar motor hyperexcitability. To assess the effect of epitope-specific GAD65Ab on cognitive and motor functions, we conducted behavioral experiments in rats that received cerebellar injections with two distinct monoclonal GAD65Ab (b96.11 and b78).


Pre-reproductive maternal enrichment influences offspring developmental trajectories: motor behavior and neurotrophin expression.

  • Paola Caporali‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2014‎

Environmental enrichment is usually applied immediately after weaning or in adulthood, with strong effects on CNS anatomy and behavior. To examine the hypothesis that a pre-reproductive environmental enrichment of females could affect the motor development of their offspring, female rats were reared in an enriched environment from weaning to sexual maturity, while other female rats used as controls were reared under standard conditions. Following mating with standard-reared males, all females were housed individually. To evaluate the eventual transgenerational influence of positive pre-reproductive maternal experiences, postural and motor development of male pups was analyzed from birth to weaning. Moreover, expression of Brain Derived Neurotrophic Factor and Nerve Growth Factor in different brain regions was evaluated at birth and weaning. Pre-reproductive environmental enrichment of females affected the offspring motor development, as indicated by the earlier acquisition of complex motor abilities displayed by the pups of enriched females. The earlier acquisition of motor abilities was associated with enhanced neurotrophin levels in striatum and cerebellum. In conclusion, maternal positive experiences were transgenerationally transmitted, and influenced offspring phenotype at both behavioral and biochemical levels.


Effects of Omega-3 Fatty Acid Supplementation on Cognitive Functions and Neural Substrates: A Voxel-Based Morphometry Study in Aged Mice.

  • Debora Cutuli‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

Human and experimental studies have revealed putative neuroprotective and pro-cognitive effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in aging, evidencing positive correlations between peripheral n-3 PUFA levels and regional grey matter (GM) volume, as well as negative correlations between dietary n-3 PUFA levels and cognitive deficits. We recently showed that n-3 PUFA supplemented aged mice exhibit better hippocampal-dependent mnesic functions, along with enhanced cellular plasticity and reduced neurodegeneration, thus supporting a role of n-3 PUFA supplementation in preventing cognitive decline during aging. To corroborate these initial results and develop new evidence on the effects of n-3 PUFA supplementation on brain substrates at macro-scale level, here we expanded behavioral analyses to the emotional domain (anxiety and coping skills), and carried out a fine-grained regional GM volumetric mapping by using high-resolution MRI-based voxel-based morphometry. The behavioral effects of 8 week n-3 PUFA supplementation were measured on cognitive (discriminative, spatial and social) and emotional (anxiety and coping) abilities of aged (19 month-old at the onset of study) C57B6/J mice. n-3 PUFA supplemented mice showed better mnesic performances as well as increased active coping skills. Importantly, these effects were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM volumes, and with increased post mortem n-3 PUFA brain levels. These findings indicate that increased dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal GM structure and function, an effect present also when the supplementation starts at late age. Our data are consistent with a protective role of n-3 PUFA supplementation in counteracting cognitive decline, emotional dysfunctions and brain atrophy.


Before or after does it matter? Different protocols of environmental enrichment differently influence motor, synaptic and structural deficits of cerebellar origin.

  • Debora Cutuli‎ et al.
  • Neurobiology of disease‎
  • 2011‎

Cerebellar compensation is a reliable model of lesion-induced plasticity occurring through profound synaptic and neurochemical modifications in cortical and sub-cortical regions. As the recovery from cerebellar deficits progresses, the firstly enhanced glutamate striatal transmission is then normalized. The time course of cerebellar compensation and the concomitant striatal modifications might be influenced by protocols of environmental enrichment (EE) differently timed in respect to cerebellar lesion. In the present study, we analyzed the effects of different EE protocols on postural and locomotor behaviors (by means of a neurological rating scale), and on striatal synaptic activity (by means of recordings of spontaneous glutamate-mediated excitatory postsynaptic currents (sEPSCs)) and on morphological correlates (by means of density and dendritic length of Fast Spiking (FS) interneurons) following hemicerebellectomy (HCb) in rats. Cerebellar motor deficits were reduced faster in the enriched animals in comparison to standard housed HCbed rats. The beneficial influence of EE was higher in the animals enriched before the HCb than in rats enriched only after the lesion. In parallel, the HCb-induced increase in striatal sEPSCs was not observed in rats enriched before HCb and attenuated in rats enriched after HCb. Furthermore, the EE prevented the shrinkage of dendritic arborization of FS striatal interneurons. Also this effect was more marked in animals enriched before than after the HCb. The exposure to EE exerted either neuro-protective or therapeutic actions on the cerebellar deficits. The experience-dependent changes of the synaptic and neuronal connectivity observed in the striatal neurons may represent one of the mechanisms through which the enrichment facilitates functional compensation following the cerebellar damage.


Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates.

  • Debora Cutuli‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2015‎

Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in enriched environments. Females reared in standard conditions were used as controls. At 2.5 months of age all females were mated and reared in standard conditions with their offspring. Maternal care behaviors and nesting activity were assessed in lactating dams. Their male pups were also behaviorally evaluated at different post-natal days (pnd). Brain BDNF, reelin and adult hippocampal neurogenesis levels were measured as biochemical correlates of neuroplasticity. EF showed more complex maternal care than controls due to their higher levels of licking, crouching and nest building activities. Moreover, their offspring showed higher discriminative (maternal odor preference T-maze, pnd 10) and spatial (Morris Water Maze, pnd 45; Open Field with objects, pnd 55) performances, with no differences in social abilities (Sociability test, pnd 35), in comparison to controls. BDNF levels were increased in EF frontal cortex at pups' weaning and in their offspring hippocampus at pnd 21 and 55. No differences in offspring reelin and adult hippocampal neurogenesis levels were found. In conclusion, our study indicates that pre-reproductive maternal enrichment positively influences female rats' maternal care and cognitive development of their offspring, demonstrating thus a transgenerational transmission of EE benefits linked to enhanced BDNF-induced neuroplasticity.


n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice.

  • Debora Cutuli‎ et al.
  • Frontiers in aging neuroscience‎
  • 2014‎

As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations) found in n-3 PUFA supplemented mice also pointed toward an effective neuroprotection. On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.


Interaction does Count: A Cross-Fostering Study on Transgenerational Effects of Pre-reproductive Maternal Enrichment.

  • Paola Caporali‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2015‎

Pre-reproductive environmental enrichment of female rats influences sensorimotor development and spatial behavior of the offspring, possibly through the changed maternal nurturing. Nevertheless, maternal care could be not the solely responsible for changing offspring developmental trajectories. To disentangle the specific contribution to the transgenerational inheritance of pre- and post-natal factors, a cross-fostering study was performed. Female rats were reared in an enriched environment from weaning to sexual maturity, while control female rats were reared under standard conditions. Following mating with standard-reared males, all females were housed individually. Immediately after delivery, in- or cross-fostering manipulations were performed so that any foster dams received pups born to another dam of the same (in-fostering) or the opposite (cross-fostering) pre-reproductive rearing condition. In lactating dams maternal care and nesting activities were assessed, while in their male pups spatial abilities were assessed through Morris Water Maze (MWM) test at post-natal day 45. Moreover, the expression of Brain-Derived-Neurotrophic-Factor (BDNF) was evaluated in the hippocampus and frontal cortex of dams and pups at weaning. Pre-reproductive maternal environmental enrichment, followed by adoption procedures, loosened its potential in modifying maternal care and offspring developmental trajectories, as indicated by the lack of differences between in-fostered groups of dams and pups. In addition, enriched dams rearing standard pups showed the least complex maternal repertoire (the highest sniffing duration and the lowest nest quality), and their pups showed a reduced spatial learning in the MWM. Nevertheless, pre-reproductive maternal enrichment kept influencing neurotrophic pattern, with enriched dams expressing increased frontal BDNF levels (regardless of the kind of fostered pups), and their offspring expressing increased hippocampal BDNF levels. The present findings enlighten the crucial importance of the early mother-pups interactions in influencing maternal care and offspring phenotype, with the enriched dam-standard pups couple resulting in the most maladaptive encounter. Our study thus sustains that the bidirectional interactions between mother and pups are able to deeply shape offspring phenotype.


Observational Learning in Low-Functioning Children With Autism Spectrum Disorders: A Behavioral and Neuroimaging Study.

  • Francesca Foti‎ et al.
  • Frontiers in psychology‎
  • 2018‎

New skills may be learned from the outcomes of their own internally generated actions (experiential learning) or from the observation of the consequences of externally generated actions (observational learning). Observational learning requires the coordination of cognitive functions and the processing of social information. Due to the "social" abilities underlying observational learning, the study of this process in individuals with limited social abilities such as those affected by Autism Spectrum Disorders (ASD) is worthy of being investigated. We asked a group of 16 low-functioning young children with ASD and group of 16 sex- and mental age-matched typically developing (TD) children to build a house with a set of bricks after a video-demonstration showing an actor who built the house (observational task - OBS task) and then to build by trial and error another house (experiential task - EXP task). For ASD group, performances in learning tasks were correlated with measures of cortical thickness of specific Regions of Interest (ROI) and volume of deep gray matter structures known to be related with such kinds of learning. According to our a priori hypothesis, for OBS task we selected the following ROI: frontal lobe (pars opercularis, pars triangularis, and premotor area), parietal lobe (inferior parietal gyrus), temporal lobe (superior temporal gyrus), cerebellar hemispheres. For EXP task, we selected the following ROI: precentral frontal gyrus and superior frontal gyrus, cerebellar hemispheres, basal ganglia, thalamus. Although performances of ASD and TD children improved in both OBS and EXP tasks, children with ASD obtained lower scores of goal achievement than TD children in both learning tasks. Only in ASD group, goal achievement scores positively correlated with hyperimitations indicating that children with ASD tended to have a "copy-all" approach that facilitated the goal achievement. Moreover, the marked hyperimitative tendencies of children with ASD were positively associated with the thickness of left pars opercularis, left premotor area, and right superior temporal gyrus, areas belonging to mirror neuron system, and with the volume of both cerebellar hemispheres. These findings suggest that in children with ASD the hyperimitation can represent a learning strategy that might be related to the mirror neuron system.


The Development of Spatial Memory Analyzed by Means of Ecological Walking Task.

  • Pierpaolo Sorrentino‎ et al.
  • Frontiers in psychology‎
  • 2019‎

The present study is aimed at investigating the development of spatial memory in pre-school children aged 4-6 years using an ecological walking task with multiple rewards. The participants were to explore an open space in order to find nine rewards placed in buckets arranged in three spatial configurations: a Cross, a 3 × 3 Matrix, and a Cluster composed of three groups of three buckets each. Clear age-related improvements were evident in all the parameters analyzed. In fact, there was a general trend for younger children to display worse performance than the older ones. Moreover, males performed better than females in both the search efficiency and visiting all buckets. Additionally, the search efficiency proved to be a function of the difficulty of the configuration to be explored: the Matrix and Cluster configurations were easier to explore than the Cross configuration. Taken altogether, the present findings suggest that there is a general improvement in the spatial memory abilities in preschoolers and that solving an open space task could be influenced by gender. Moreover, it can be proposed that both the procedural competences and the memory load requested to explore a specific environment are determined by its specific features.


Functional recovery after cerebellar damage is related to GAP-43-mediated reactive responses of pre-cerebellar and deep cerebellar nuclei.

  • Lorena Burello‎ et al.
  • Experimental neurology‎
  • 2012‎

Since brain injuries in adulthood are a leading cause of long-term disabilities, the development of rehabilitative strategies able to impact on functional outcomes requires detailing adaptive neurobiological responses. Functional recovery following brain insult is mainly ascribed to brain neuroplastic properties although the close linkage between neuronal plasticity and functional recovery is not yet fully clarified. The present study analyzed the reactive responses of pre-cerebellar (inferior olive, lateral reticular nucleus and pontine nuclei) and deep cerebellar nuclei after a hemicerebellectomy, considering the great plastic potential of the cerebellar system in physiological and pathological conditions. The time course of the plastic reorganization following cerebellar lesion was investigated by monitoring the Growth Associated Protein-43 (GAP-43) immunoreactivity. The time course of recovery from cerebellar symptoms was also assessed to parallel behavioral and neurobiological parameters. A key role of GAP-43 in neuronal reactive responses was evidenced. Neurons that underwent an axotomy as consequence of the right hemicerebellectomy (neurons of left inferior olive, right lateral reticular nucleus and left pontine nuclei) exhibited enhanced GAP-43 immunoreactivity and cell death. As for the not-axotomized neurons, we found enhanced GAP-43 immunoreactivity only in right pontine nuclei projecting to the spared (left) hemicerebellum. GAP-43 levels augmented also in the three deep cerebellar nuclei of the spared hemicerebellum, indicating the ponto-cerebellar circuit as crucially involved in functional recovery. Interestingly, each nucleus showed a distinct time course in GAP-43 immunoreactivity. GAP-43 levels peaked during the first post-operative week in the fastigial and interposed nuclei and after one month in the dentate nucleus. These results suggest that the earlier plastic events of the fastigial and interposed nuclei were driving compensation of the elementary features of posture and locomotion, while the later plastic events of the dentate nucleus were mediating the recovered ability to flexibly adjust the locomotor plan.


Peripersonal Visuospatial Abilities in Williams Syndrome Analyzed by a Table Radial Arm Maze Task.

  • Francesca Foti‎ et al.
  • Frontiers in human neuroscience‎
  • 2020‎

Williams syndrome (WS) is a genetic deletion syndrome characterized by severe visuospatial deficits affecting spatial exploration and navigation abilities in extra-personal space.To date, little is known about spatial elaboration and reaching abilities in the peripersonal space in individuals with WS. The present study is aimed at evaluating the visuospatial abilities in individuals with WS and comparing their performances with those of mental age-matched typically developing (TD) children by using a highly sensitive ecological version of the Radial Arm Maze (table RAM). We evaluated 15 individuals with WS and 15 TD children in two different table RAM paradigms: the free-choice paradigm, mainly to analyze the aspects linked to procedural and memory components, and the forced-choice paradigm, to disentangle the components linked to spatial working memory from the procedural ones.Data show that individuals with WS made significantly more working memory errors as compared with TD children, thus evidencing a marked deficit in resolving the task when the mnesic load increased. Our findings provide new insights on the cognitive profile of WS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: