Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis.

  • Seung Hee Choi‎ et al.
  • Scientific reports‎
  • 2014‎

Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures.


Coiled-coil structure-dependent interactions between polyQ proteins and Foxo lead to dendrite pathology and behavioral defects.

  • Min Jee Kwon‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Neurodegenerative disorders, such as Huntington's diseases and spinocerebellar ataxias (SCAs), are driven by proteins with expanded polyglutamine (polyQ) tracts. Recently, coiled-coil structures in polyQ regions of such proteins were shown to facilitate aggregate formation and ultimately lead to cell death. However, the molecular mechanism linking these structural domains to neuronal toxicity of polyQ proteins remains elusive. Here, we demonstrate that coiled-coil structures in the Q repeat region of SCA type 3 (SCA3) polyQ proteins confer protein toxicity in Drosophila neurons. To functionally characterize coiled-coil structures in the Q repeat regions, we generated three structural variants of SCA3 polyQ proteins: (i) MJDtr-76Q, containing both α-helical coiled-coil and β-sheet hairpin structures in the Q repeat region; (ii) MJDtr-70Q_cc0, possessing only α-helical coiled-coil structures due to the incorporation of β-sheet-breaking residues (Q-to-N or Q-to-E mutations); and (iii) MJDtr-70Q_pQp, with no secondary structure due to the introduced proline residues (Q-to-P mutations). Through comparative analysis of these variants, we found that coiled-coil structures facilitated nuclear localization of SCA3 polyQ proteins and induced dendrite defects in Drosophila dendritic arborization neurons. Furthermore, genetic and functional screening identified the transcription factor Foxo as a target of polyQ proteins, and coiled-coil-mediated interactions of Foxo and polyQ proteins in the nucleus resulted in the observed dendrite and behavioral defects in Drosophila These results demonstrate that coiled-coil structures of polyQ proteins are crucial for their neuronal toxicity, which is conferred through coiled-coil to coiled-coil interactions with the nuclear targets of these proteins.


Bacterial Nucleoside Catabolism Controls Quorum Sensing and Commensal-to-Pathogen Transition in the Drosophila Gut.

  • Eun-Kyoung Kim‎ et al.
  • Cell host & microbe‎
  • 2020‎

Although the gut microbiome is generally symbiotic or commensal, some microbiome members become pathogenic under certain circumstances. However, the factors driving this pathogenic switch are largely unknown. Pathogenic bacteria can generate uracil that triggers host dual oxidase (DUOX) to produce antimicrobial reactive oxygen species (ROS). We show that pathogens generate uracil and ribose upon nucleoside catabolism of gut luminal uridine, which triggers not only host defenses but also inter-bacterial communication and pathogenesis in Drosophila. Uridine-derived uracil triggers DUOX-dependent ROS generation, whereas ribose induces bacterial quorum sensing (QS) and virulence gene expression. Genes implicated in nucleotide metabolism are found in pathogens but not commensal bacteria, and their genetic ablation blocks QS and the commensal-to-pathogen transition in vivo. Furthermore, commensal bacteria lack functional nucleoside catabolism, which is required to achieve gut-microbe symbiosis, but can become pathogenic by enabling nucleotide catabolism. These findings reveal molecular mechanisms governing the commensal-to-pathogen transition in different contexts of host-microbe interactions.


CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity.

  • Myo-Hyeon Park‎ et al.
  • eLife‎
  • 2019‎

CCN1 (CYR61) stimulates active angiogenesis in various tumours, although the mechanism is largely unknown. Here, we report that CCN1 is a key regulator of endothelial tip cell activity in angiogenesis. Microvessel networks and directional vascular cell migration patterns were deformed in ccn1-knockdown zebrafish embryos. CCN1 activated VEGFR2 and downstream MAPK/PI3K signalling pathways, YAP/TAZ, as well as Rho effector mDia1 to enhance tip cell activity and CCN1 itself. VEGFR2 interacted with integrin αvβ3 through CCN1. Integrin αvβ3 inhibitor repressed tip cell number and sprouting in postnatal retinas from endothelial cell-specific Ccn1 transgenic mice, and allograft tumours in Ccn1 transgenic mice showed hyperactive vascular sprouting. Cancer patients with high CCN1 expression have poor survival outcomes and positive correlation with ITGAV and ITGB3 and high YAP/WWTR1. Thus, our data underscore the positive feedback regulation of tip cells by CCN1 through integrin αvβ3/VEGFR2 and increased YAP/TAZ activity, suggesting a promising therapeutic intervention for pathological angiogenesis.


Golgi Outpost Synthesis Impaired by Toxic Polyglutamine Proteins Contributes to Dendritic Pathology in Neurons.

  • Chang Geon Chung‎ et al.
  • Cell reports‎
  • 2017‎

Dendrite aberration is a common feature of neurodegenerative diseases caused by protein toxicity, but the underlying mechanisms remain largely elusive. Here, we show that nuclear polyglutamine (polyQ) toxicity resulted in defective terminal dendrite elongation accompanied by a loss of Golgi outposts (GOPs) and a decreased supply of plasma membrane (PM) in Drosophila class IV dendritic arborization (da) (C4 da) neurons. mRNA sequencing revealed that genes downregulated by polyQ proteins included many secretory pathway-related genes, including COPII genes regulating GOP synthesis. Transcription factor enrichment analysis identified CREB3L1/CrebA, which regulates COPII gene expression. CrebA overexpression in C4 da neurons restores the dysregulation of COPII genes, GOP synthesis, and PM supply. Chromatin immunoprecipitation (ChIP)-PCR revealed that CrebA expression is regulated by CREB-binding protein (CBP), which is sequestered by polyQ proteins. Furthermore, co-overexpression of CrebA and Rac1 synergistically restores the polyQ-induced dendrite pathology. Collectively, our results suggest that GOPs impaired by polyQ proteins contribute to dendrite pathology through the CBP-CrebA-COPII pathway.


Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila.

  • Kyung-Ah Lee‎ et al.
  • Cell host & microbe‎
  • 2018‎

DUOX, a member of the NADPH oxidase family, acts as the first line of defense against enteric pathogens by producing microbicidal reactive oxygen species. DUOX is activated upon enteric infection, but the mechanisms regulating DUOX activity remain incompletely understood. Using Drosophila genetic tools, we show that enteric infection results in "pro-catabolic" signaling that initiates metabolic reprogramming of enterocytes toward lipid catabolism, which ultimately governs DUOX homeostasis. Infection induces signaling cascades involving TRAF3 and kinases AMPK and WTS, which regulate TOR kinase to control the balance of lipogenesis versus lipolysis. Enhancing lipogenesis blocks DUOX activity, whereas stimulating lipolysis via ATG1-dependent lipophagy is required for DUOX activation. Drosophila with altered activity in TRAF3-AMPK/WTS-ATG1 pathway components exhibit abolished infection-induced lipolysis, reduced DUOX activation, and enhanced susceptibility to enteric infection. Thus, this work uncovers signaling cascades governing inflammation-induced metabolic reprogramming and provides insight into the pathophysiology of immune-metabolic interactions in the microbe-laden gut epithelia.


Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype.

  • Byong-Keol Min‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions.


Integrative analysis of transcriptomic data for identification of T-cell activation-related mRNA signatures indicative of preterm birth.

  • Jae Young Yoo‎ et al.
  • Scientific reports‎
  • 2021‎

Preterm birth (PTB), defined as birth at less than 37 weeks of gestation, is a major determinant of neonatal mortality and morbidity. Early diagnosis of PTB risk followed by protective interventions are essential to reduce adverse neonatal outcomes. However, due to the redundant nature of the clinical conditions with other diseases, PTB-associated clinical parameters are poor predictors of PTB. To identify molecular signatures predictive of PTB with high accuracy, we performed mRNA sequencing analysis of PTB patients and full-term birth (FTB) controls in Korean population and identified differentially expressed genes (DEGs) as well as cellular pathways represented by the DEGs between PTB and FTB. By integrating the gene expression profiles of different ethnic groups from previous studies, we identified the core T-cell activation pathway associated with PTB, which was shared among all previous datasets, and selected three representative DEGs (CYLD, TFRC, and RIPK2) from the core pathway as mRNA signatures predictive of PTB. We confirmed the dysregulation of the candidate predictors and the core T-cell activation pathway in an independent cohort. Our results suggest that CYLD, TFRC, and RIPK2 are potentially reliable predictors for PTB.


RUNX3 methylation drives hypoxia-induced cell proliferation and antiapoptosis in early tumorigenesis.

  • Sun Hee Lee‎ et al.
  • Cell death and differentiation‎
  • 2021‎

Inactivation of tumor suppressor Runt-related transcription factor 3 (RUNX3) plays an important role during early tumorigenesis. However, posttranslational modifications (PTM)-based mechanism for the inactivation of RUNX3 under hypoxia is still not fully understood. Here, we demonstrate a mechanism that G9a, lysine-specific methyltransferase (KMT), modulates RUNX3 through PTM under hypoxia. Hypoxia significantly increased G9a protein level and G9a interacted with RUNX3 Runt domain, which led to increased methylation of RUNX3 at K129 and K171. This methylation inactivated transactivation activity of RUNX3 by reducing interactions with CBFβ and p300 cofactors, as well as reducing acetylation of RUNX3 by p300, which is involved in nucleocytoplasmic transport by importin-α1. G9a-mediated methylation of RUNX3 under hypoxia promotes cancer cell proliferation by increasing cell cycle or cell division, while suppresses immune response and apoptosis, thereby promoting tumor growth during early tumorigenesis. Our results demonstrate the molecular mechanism of RUNX3 inactivation by G9a-mediated methylation for cell proliferation and antiapoptosis under hypoxia, which can be a therapeutic or preventive target to control tumor growth during early tumorigenesis.


NF-κB disinhibition contributes to dendrite defects in fly models of neurodegenerative diseases.

  • Myeong Hoon Han‎ et al.
  • The Journal of cell biology‎
  • 2020‎

Dendrite pathology is frequently observed in various neurodegenerative diseases (NDs). Although previous studies identified several pathogenic mediators of dendrite defects that act through loss of function in NDs, the underlying pathogenic mechanisms remain largely unexplored. Here, our search for additional pathogenic contributors to dendrite defects in NDs identifies Relish/NF-κB as a novel gain-of-toxicity-based mediator of dendrite defects in animal models for polyglutamine (polyQ) diseases and amyotrophic lateral sclerosis (ALS). In a Drosophila model for polyQ diseases, polyQ-induced dendrite defects require Dredd/Caspase-8-mediated endoproteolytic cleavage of Relish to generate the N-terminal fragment, Rel68, and subsequent Charon-mediated nuclear localization of Rel68. Rel68 alone induced neuronal toxicity causing dendrite and behavioral defects, and we identify two novel transcriptional targets, Tup and Pros, that mediate Rel68-induced neuronal toxicity. Finally, we show that Rel68-induced toxicity also contributes to dendrite and behavioral defects in a Drosophila model for ALS. Collectively, our data propose disinhibition of latent toxicity of Relish/NF-κB as a novel pathogenic mechanism underlying dendrite pathology in NDs.


E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues.

  • Bongsoo Choi‎ et al.
  • Molecules and cells‎
  • 2022‎

E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.


Impaired AKT signaling and lung tumorigenesis by PIERCE1 ablation in KRAS-mutant non-small cell lung cancer.

  • Jae-Il Roh‎ et al.
  • Oncogene‎
  • 2020‎

KRAS-mutant non-small cell lung cancer (NSCLC) is a major lung cancer subtype that leads to many cancer-related deaths worldwide. Although numerous studies on KRAS-mutant type NSCLC have been conducted, new oncogenic or tumor suppressive genes need to be detected because a large proportion of NSCLC patients does not respond to currently used therapeutics. Here, we show the tumor-promoting function of a cell cycle-related protein, PIERCE1, in KRAS-mutant NSCLC. Mechanistically, PIERCE1 depletion inhibits cell growth and AKT phosphorylation (pAKT) at S473, which is particularly observed in KRAS-mutant lung cancers. Analyses of AKT-related genes using microarray, immunoblotting, and real-time quantitative PCR indicated that PIERCE1 negatively regulates the gene expression of the AKT suppressor, TRIB3, through the CHOP pathway, which is a key regulatory pathway for TRIB3 expression. Similarly, in vivo analyses of PIERCE1 depletion in the KRAS mutation-related lung cancer mouse models revealed the suppressive effect of PIERCE1 knockout in urethane- and KRASG12D-induced lung tumorigenesis with decreased pAKT levels observed in the tumors. Tissue microarrays of human lung cancers indicated the expression of PIERCE1 in 83% of lung cancers and its correlation with pAKT expression. Thus, we illustrate how PIERCE1 depletion may serve as a therapeutic strategy against KRAS-mutant NSCLC and propose the clinical benefit of PIERCE1.


PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141+ cancer-associated fibroblasts in pancreatic cancer.

  • Duk Ki Kim‎ et al.
  • Nature communications‎
  • 2022‎

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year overall survival rate. Patients with PDAC display limited benefits after undergoing chemotherapy or immunotherapy modalities. Herein, we reveal that chemotherapy upregulates placental growth factor (PlGF), which directly activates cancer-associated fibroblasts (CAFs) to induce fibrosis-associated collagen deposition in PDAC. Patients with poor prognosis have high PIGF/VEGF expression and an increased number of PIGF/VEGF receptor-expressing CAFs, associated with enhanced collagen deposition. We also develop a multi-paratopic VEGF decoy receptor (Ate-Grab) by fusing the single-chain Fv of atezolizumab (anti-PD-L1) to VEGF-Grab to target PD-L1-expressing CAFs. Ate-Grab exerts anti-tumor and anti-fibrotic effects in PDAC models via the PD-L1-directed PlGF/VEGF blockade. Furthermore, Ate-Grab synergizes with gemcitabine by relieving desmoplasia. Single-cell RNA sequencing identifies that a CD141+ CAF population is reduced upon Ate-Grab and gemcitabine combination treatment. Overall, our results elucidate the mechanism underlying chemotherapy-induced fibrosis in PDAC and highlight a combinatorial therapeutic strategy for desmoplastic cancers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: