Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Contribution of a non-β-cell source to β-cell mass during pregnancy.

  • Chiara Toselli‎ et al.
  • PloS one‎
  • 2014‎

β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1) determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2) investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3) plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP), we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1) as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1) were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.


Prolactin as an Adjunct for Type 1 Diabetes Immunotherapy.

  • Colin M Hyslop‎ et al.
  • Endocrinology‎
  • 2016‎

Type 1 diabetes is caused by autoimmune destruction of β-cells. Although immunotherapy can restore self-tolerance thereby halting continued immune-mediated β-cell loss, residual β-cell mass and function is often insufficient for normoglycemia. Using a growth factor to boost β-cell mass can potentially overcome this barrier and prolactin (PRL) may fill this role. Previous studies have shown that PRL can stimulate β-cell proliferation and up-regulate insulin synthesis and secretion while reducing lymphocytic infiltration of islets, suggesting that it may restore normoglycemia through complementary mechanisms. Here, we test the hypothesis that PRL can improve the efficacy of an immune modulator, the anticluster of differentiation 3 monoclonal antibody (aCD3), in inducing diabetes remission by up-regulating β-cell mass and function. Diabetic nonobese diabetic (NOD) mice were treated with a 5-day course of aCD3 with or without a concurrent 3-week course of PRL. We found that a higher proportion of diabetic mice treated with the aCD3 and PRL combined therapy achieved diabetes reversal than those treated with aCD3 alone. The aCD3 and PRL combined group had a higher β-cell proliferation rate, an increased β-cell fraction, larger islets, higher pancreatic insulin content, and greater glucose-stimulated insulin release. Lineage-tracing analysis found minimal contribution of β-cell neogenesis to the formation of new β-cells. Although we did not detect a significant difference in the number or proliferative capacity of T cells, we observed a higher proportion of insulitis-free islets in the aCD3 and PRL group. These results suggest that combining a growth factor with an immunotherapy may be an effective treatment paradigm for autoimmune diabetes.


Oligofructose as an adjunct in treatment of diabetes in NOD mice.

  • Clement Chan‎ et al.
  • Scientific reports‎
  • 2016‎

In type 1 diabetes, restoration of normoglycemia can be achieved if the autoimmune attack on beta cells ceases and insulin requirement is met by the residual beta cells. We hypothesize that an adjunctive therapy that reduces insulin demand by increasing insulin sensitivity will improve the efficacy of an immunotherapy in reversing diabetes. We tested the gut microbiota-modulating prebiotic, oligofructose (OFS), as the adjunctive therapy. We treated non-obese diabetic mice with an immunotherapy, monoclonal anti-CD3 antibody (aCD3), with or without concurrent dietary supplement of OFS. After 8 weeks of OFS supplement, the group that received both aCD3 and OFS (aCD3 + OFS) had a higher diabetes remission rate than the group that received aCD3 alone. The aCD3 + OFS group had higher insulin sensitivity accompanied by reduced lymphocytic infiltrate into the pancreatic islets, higher beta-cell proliferation rate, higher pancreatic insulin content, and secreted more insulin in response to glucose. The addition of OFS also caused a change in gut microbiota, with a higher level of Bifidobacterium and lower Clostridium leptum. Hence, our results suggest that OFS can potentially be an effective therapeutic adjunct in the treatment of type 1 diabetes by improving insulin sensitivity and beta-cell function, leading to improved glycemic control.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: