Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 95 papers

Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells.

  • Chen Sun‎ et al.
  • Scientific reports‎
  • 2016‎

In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples.


Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.

  • Arkarachai Fungtammasan‎ et al.
  • Genome research‎
  • 2015‎

Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution.


Novel sequences, structural variations and gene presence variations of Asian cultivated rice.

  • Zhiqiang Hu‎ et al.
  • Scientific data‎
  • 2018‎

Genomic diversity within a species genome is the genetic basis of its phenotypic diversity essential for its adaptation to environments. The big picture of the total genetic diversity within Asian cultivated rice has been uncovered since the sequencing of 3,000 rice genomes, including the SNP data publicly available in the SNP-Seek database. Here we report other aspects of the genetic diversity, including rice sequences assembled from over 3,000 accessions but absent in the Nipponbare reference genome, structural variations (SVs) and gene presence/absence variations (PAVs) in 453 accessions with sequencing depth over 20x. Using either SVs or gene PAVs, we were able to reconstruct the population structure of O. sativa, which was consistent with previous result based on SNPs. Moreover, we demonstrated the usefulness of the new data sets by successfully detecting the strong association of the "Green Revolution gene", sd1, with plant height. Our data provide a more comprehensive view of the genetic diversity within rice, as well as additional genomic resources for research in rice breeding and plant biology.


VEGF-mediated proliferation of human adipose tissue-derived stem cells.

  • Guangfeng Chen‎ et al.
  • PloS one‎
  • 2013‎

Human adipose tissue-derived stem cells (ADSCs) are an attractive multipotent stem cell source with therapeutic applicability across diverse fields for the repair and regeneration of acute and chronically damaged tissues. In recent years, there has been increasing interest in ADSC for tissue engineering applications. However, the mechanisms underlying the regulation of ADSC proliferation are not fully understood. Here we show that 47 transcripts are up-regulated while 23 are down-regulated in ADSC compared to terminally differentiated cells based on global mRNA profiling and microRNA profiling. Among the up-regulated genes, the expression of vascular endothelial growth factor (VEGF) is fine-tuned by miR-199a-5p. Further investigation indicates that VEGF accelerates ADSC proliferation whereas the multipotency of ADSC remains stable in terms of adipogenic, chondrogenic and osteogenic potentials after VEGF treatment, suggesting that VEGF may serve as an excellent supplement for accelerating ADSC proliferation during in vitro expansion.


Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish.

  • Zinan Teng‎ et al.
  • Developmental and comparative immunology‎
  • 2014‎

The function and mechanism of chitinases in early embryonic development remain largely unknown. We show here that recombinant chitinase-3 (rChi3) is able to hydrolyze the artificial chitin substrate, 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside, and to bind to and inhibit the growth of the fungus Candida albicans, implicating that Chi3 plays a dual function in innate immunity and chitin-bearing food digestion in zebrafish. This is further corroborated by the expression profile of Chi3 in the liver and gut, which are both immune- and digestion-relevant organs. Compared with rChi3, rChi3-CD lacking CBD still retains partial capacity to bind to C. albicans, but its enzymatic and antifungal activities are significantly reduced. By contrast, rChi3-E140N with the putative catalytic residue E140 mutated shows little affinity to chitin, and its enzymatic and antifungal activities are nearly completely lost. These suggest that both enzymatic and antifungal activities of Chi3 are dependent on the presence of CBD and E140. We also clearly demonstrate that in zebrafish, both the embryo extract and the developing embryo display antifungal activity against C. albicans, and all the findings point to chitinase-3 (Chi3) being a newly-identified factor involved in the antifungal activity. Taken together, a dual function in both innate immunity and food digestion in embryo is proposed for zebrafish Chi3. It also provides a new angle to understand the immune role of chitinases in early embryonic development of animals.


miR-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/Smad4 pathway.

  • Chen Sun‎ et al.
  • World journal of gastroenterology‎
  • 2017‎

To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.


Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories.

  • Dheeraj S Roy‎ et al.
  • Cell‎
  • 2017‎

The formation and retrieval of a memory is thought to be accomplished by activation and reactivation, respectively, of the memory-holding cells (engram cells) by a common set of neural circuits, but this hypothesis has not been established. The medial temporal-lobe system is essential for the formation and retrieval of episodic memory for which individual hippocampal subfields and entorhinal cortex layers contribute by carrying out specific functions. One subfield whose function is poorly known is the subiculum. Here, we show that dorsal subiculum and the circuit, CA1 to dorsal subiculum to medial entorhinal cortex layer 5, play a crucial role selectively in the retrieval of episodic memories. Conversely, the direct CA1 to medial entorhinal cortex layer 5 circuit is essential specifically for memory formation. Our data suggest that the subiculum-containing detour loop is dedicated to meet the requirements associated with recall such as rapid memory updating and retrieval-driven instinctive fear responses.


Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes.

  • Sergey M Pozov‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2020‎

The performance of solution-processed organic light emitting diodes (OLEDs) is often limited by non-uniform contacts. In this work, we introduce Ni-containing solution-processed metal oxide (MO) interfacial layers inserted between indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve the bottom electrode contact for OLEDs using the poly(p-phenylene vinylene) (PPV) derivative Super-Yellow (SY) as an emission layer. For ITO/Ni-containing MO/PEDOT:PSS bottom electrode structures we show enhanced wetting properties that result in an improved OLED device efficiency. Best performance is achieved using a Cu-Li co-doped spinel nickel cobaltite [(Cu-Li):NiCo2O4], for which the current efficiency and luminous efficacy of SY OLEDs increased, respectively, by 12% and 11% from the values obtained for standard devices without a Ni-containing MO interface modification between ITO and PEDOT:PSS. The enhanced performance was attributed to the improved morphology of PEDOT:PSS, which consequently increased the hole injection capability of the optimized ITO/(Cu-Li):NiCo2O4/PEDOT:PSS electrode.


TNFAIP8 protein functions as a tumor suppressor in inflammation-associated colorectal tumorigenesis.

  • Yunwei Lou‎ et al.
  • Cell death & disease‎
  • 2022‎

Tumor necrosis factor-α-induced protein 8 (TNFAIP8 or TIPE) is a member of the TNFAIP8 family. While TIPE was broadly considered to be pro-cancerous, its precise roles in carcinogenesis especially those of the intestinal tract are not clear. Here, we show that genetic deletion of TIPE in mice exacerbated chemical-induced colitis and colitis-associated colon cancer. Loss of TIPE exacerbated inflammatory responses and inflammation-associated dysbiosis, leading to the activation of NF-κB and STAT3, and it also accelerated dysplasia, DNA damage and proliferation of intestinal epithelial cells. We further show that colon microbiota were essential for increased tumor growth and progression in Tipe-/- mice. The tumor suppressive function of TIPE originated primarily from the non-hematopoietic compartment. Importantly, TIPE was downregulated in human colorectal cancers, and patients with low levels of Tipe mRNA were associated with reduced survival. These results indicate that TIPE serves as an important modulator of colitis and colitis-associated colon cancer.


Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma.

  • Jing Yan‎ et al.
  • Frontiers in oncology‎
  • 2020‎

The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n = 92) and evaluated on a testing cohort (n = 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB.


Network pharmacology identification and in Vivo validation of key pharmacological pathways of Phyllanthus reticulatus (Euphorbiaceae) leaf extract in liver cancer treatment.

  • Yunli Tang‎ et al.
  • Journal of ethnopharmacology‎
  • 2022‎

Phyllanthus reticulatus (Euphorbiaceae) is a medicinal plant that has been used in Zhuang medicine since ancient times. Traditionally, it has the effect of removing toxins and detumescence and can be used to treat hepatitis in China and India. Our previous studies have proved that the ethyl acetate extract of its leaves (PRPE) has an anti-hepatoma effect.


Sequencing Ultrarare Targets with Compound Nucleic Acid Cytometry.

  • Chen Sun‎ et al.
  • Analytical chemistry‎
  • 2021‎

Targeted sequencing enables sensitive and cost-effective analysis by focusing resources on molecules of interest. Existing methods, however, are limited in enrichment power and target capture length. Here, we present a novel method that uses compound nucleic acid cytometry to achieve million-fold enrichments of molecules >10 kbp in length using minimal prior target information. We demonstrate the approach by sequencing HIV proviruses in infected individuals. Our method is useful for rare target sequencing in research and clinical applications, including for identifying cancer-associated mutations or sequencing viruses infecting cells.


Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography.

  • Chen Sun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

SARS-CoV-2 is a highly contagious and pathogenic virus that first appeared in late December 2019 and caused a global pandemic in a short period. The virus is a single-stranded RNA virus belonging to the Coronaviridae family. Numerous treatments have been developed and tested in response to the pandemic, particularly antiviral drugs. Among them, GS441524 (GS441), a nucleoside antiviral drug, has demonstrated promising results in inhibiting SARS-CoV-2. Nevertheless, the limited oral bioavailability of GS441 restricts its application to patients with the virus. In this study, a novel prodrug of GS441 (NGP-1) with an isobutyl ester and cyclic carbonate structure was designed and synthesized. Its purity and the stability in different artificial digestive juices of NGP-1 was determined with HPLC-DAD methods. The pharmacokinetics of NGP-1 and GS441 were studied in rats via gavage administration. A new LC-MS/MS method was developed to quantitatively analyze GS441 in plasma samples. The results showed that the ka, Cmax, and MRT of converted GS441 from NGP-1 were 5.9, 3, and 2.5 times greater than those of GS441 alone. The Frel of NGP-1 was approximately four-fold that of GS441, with an AUC0-∞ of 9716.3 h·ng mL-1. As a prodrug of GS441, NGP-1 increased its lipophilicity, absorption, and bioavailability, indicating that it holds promise in improving the clinical efficacy of anti-SARS-CoV-2 medications.


Discovery and characterization of the evolution, variation and functions of diversity-generating retroelements using thousands of genomes and metagenomes.

  • Fazhe Yan‎ et al.
  • BMC genomics‎
  • 2019‎

Diversity-generating retroelements (DGRs) are a unique family of retroelements that generate sequence diversity of DNA to benefit their hosts by introducing variations and accelerating the evolution of target proteins. They exist widely in bacteria, archaea, phage and plasmid. However, our understanding about DGRs in natural environments was still very limited.


Risk and clinicopathological features of osteosarcoma metastasis to the lung: A population-based study.

  • Xiaoyi Huang‎ et al.
  • Journal of bone oncology‎
  • 2019‎

Osteosarcoma is the most common primary sarcoma of the bone. Lung osteosarcoma metastases at diagnosis have a significantly poor prognosis, even when surgery plus chemotherapy are performed. Our goal was to analyze clinical and sarcoma characteristics that could help identify factors related to an increased rate of lung metastasis and to identify different modes of treatment and its correlation with survival.


Xiaoaiping Induces Developmental Toxicity in Zebrafish Embryos Through Activation of ER Stress, Apoptosis and the Wnt Pathway.

  • Juanjuan Li‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

The aim of the study was to determine the developmental toxicity of the traditional Chinese medicine Xiaoaiping (XAP) and to investigate its underlying mechanism of action. Zebrafish embryos were incubated with 0.4, 0.8, 1.2, and 1.6 mg/mL XAP. Endpoints such as mortality, hatching rate, malformation, body length, morphology score, swimming behavior, histological changes, reactive oxygen species (ROS) production, total superoxide dismutase (T-SOD) activity, and the mRNA expression of genes related to oxidative stress, endoplasmic reticulum (ER) stress, apoptosis, and the Wnt pathway were evaluated. Our results demonstrated that XAP exposure increased mortality and malformation and reduced the hatching rate. XAP resulted in severe malformation, including swim bladder deficiency, yolk retention, pericardial edema, and tail curvature. Histopathological analysis showed that XAP induced liver, heart and muscle injury. High doses (≥1.2 mg/mL) of XAP notably decreased the locomotor capacity of zebrafish. ROS generation was remarkably increased and T-SOD activity was decreased, confirming that oxidative stress was induced by XAP. The mRNA expression levels of ER stress-related genes (chop, hspa5, hsp90b1, and perk), apoptosis-related genes (caspase-3, bax, and p53) and wnt11 were significantly upregulated by XAP exposure. The expression levels of the oxidative stress-related genes (cat, sod1, and gstp2), Wnt pathway-related genes (β-catenin, wnt3a, and wnt8a) and bcl-2 initially increased and then decreased as the XAP exposure dose increased. In conclusion, we provide evidence for the first time that XAP can induce dose-related developmental toxicity, and ER stress, apoptosis and the Wnt pathway participate in the toxicity regulation.


Zebrafish CD59 has both bacterial-binding and inhibiting activities.

  • Chen Sun‎ et al.
  • Developmental and comparative immunology‎
  • 2013‎

CD59, known as protectin, usually plays roles as a regulatory inhibitor of complement, but it also exhibits activities independent of its function as a complement inhibitor. This study reported the identification and characterization of an ortholog of mammalian cd59 from zebrafish Danio rerio, which is similar to known cd59 in terms of both amino acid sequence and genomic structure as well as synteny conservation. We showed that zebrafish cd59 was maternally expressed in early embryos and expressed in a tissue-specific manner, with most abundant expression in the brain. We further showed that recombinant zebrafish CD59 was capable of binding to both the Gram-negative and Gram-positive bacteria as well as the microbial signature molecules LPS and LTA. In addition we demonstrated that recombinant zebrafish CD59 displayed slight antimicrobial activity capable of inhibiting the growth of E. coli and S. aureus. All these data indicate that zebrafish CD59 can not only binds to the bacteria and their signature molecules LPS and LTA but can also inhibit their growth, a novel role assigned to CD59.


PGAweb: A Web Server for Bacterial Pan-Genome Analysis.

  • Xinyu Chen‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

An astronomical increase in microbial genome data in recent years has led to strong demand for bioinformatic tools for pan-genome analysis within and across species. Here, we present PGAweb, a user-friendly, web-based tool for bacterial pan-genome analysis, which is composed of two main pan-genome analysis modules, PGAP and PGAP-X. PGAweb provides key interactive and customizable functions that include orthologous clustering, pan-genome profiling, sequence variation and evolution analysis, and functional classification. PGAweb presents features of genomic structural dynamics and sequence diversity with different visualization methods that are helpful for intuitively understanding the dynamics and evolution of bacterial genomes. PGAweb has an intuitive interface with one-click setting of parameters and is freely available at http://PGAweb.vlcc.cn/.


Cell-type-specific brain methylomes profiled via ultralow-input microfluidics.

  • Sai Ma‎ et al.
  • Nature biomedical engineering‎
  • 2018‎

Methylomic analyses typically require substantial amounts of DNA, thus hindering studies involving scarce samples. Here, we show that microfluidic diffusion-based reduced representative bisulfite sequencing (MID-RRBS) permits high-quality methylomic profiling with nanogram-to-single-cell quantities of starting DNA. We used the microfluidic device, which allows for efficient bisulfite conversion with high DNA recovery, to analyse genome-wide DNA methylation in cell nuclei isolated from mouse brains and sorted into NeuN+ (primarily neuronal) and NeuN- (primarily glial) fractions, and to establish cell-type-specific methylomes. Genome-wide methylation and methylation in low-CpG-density promoter regions showed distinct patterns for NeuN+ and NeuN- fractions from the mouse cerebellum. The identification of substantial variations in the methylomic landscapes of the NeuN+ fraction of the frontal cortex of mice chronically treated with an atypical antipsychotic drug suggests that this technology can be broadly used for cell-type-specific drug profiling and for the study of drug-methylome interactions.


Rhein activated Fas-induced apoptosis pathway causing cardiotoxicity in vitro and in vivo.

  • Gang Min Li‎ et al.
  • Toxicology letters‎
  • 2022‎

Rhein, one of the main active components of rhubarb (Dahuang) and Polygonum multiflorum (Heshouwu), has a wide range of effective pharmacological effects. Recently, increasing studies have focused on its potential hepatorenal toxicity, but the cardiotoxicity is unknown. In this study, we found that the IC50 of rhein to H9c2 cells at 24 h and 48 h were 94.5 and 45.9μmol/L, respectively, with positive correlation of dose-toxicity and time-toxicity. After the treatment of rhein (106, 124 and 132μmol/L), the number of H9c2 cells decreased significantly, and the morphology of H9c2 cells showed atrophy, round shape and wall detachment. Moreover, the proportion of apoptotic cells in H9c2 cells treated with rhein was significantly increased in a dose-dependent manner. And rhein induced S phase arrest of H9c2 cells and inhibited cell proliferation. Rhein up-regulated ROS, LDH levels and low MMP but down-regulated SOD content in H9c2 cells. Additionally, the results showed that the cardiac function LVEF and LVFS of rhein high-medium-low dose groups (350, 175, 87.5 mg/kg) were significantly reduced. And the contents of Ca2+, cTnT, CK and LDH in serum of KM mice were significantly up-regulated by rhein. Furthermore, western blot results suggested that rhein the above effects via promoting Fas-induced apoptosis pathway in vitro and in vivo. In general, rhein may cause cardiotoxicity via Fas-induced apoptosis pathway in vivo and in vitro, which provides reference for the safe use of medicinal plant containing rhein and its preparations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: