Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Bacterial Contamination of Platelet Products.

  • Michael R Jacobs‎ et al.
  • Microorganisms‎
  • 2024‎

Transfusion of bacterially contaminated platelets, although rare, is still a major cause of mortality and morbidity despite the introduction of many methods to limit this over the past 20 years. The methods used include improved donor skin disinfection, diversion of the first part of donations, use of apheresis platelet units rather than whole-blood derived pools, primary and secondary testing by culture or rapid test, and use of pathogen reduction. Primary culture has been in use the US since 2004, using culture 24 h after collection of volumes of 4-8 mL from apheresis collections and whole-blood derived pools inoculated into aerobic culture bottles, with limited use of secondary testing by culture or rapid test to extend shelf-life from 5 to 7 days. Primary culture was introduced in the UK in 2011 using a "large-volume, delayed sampling" (LVDS) protocol requiring culture 36-48 h after collection of volumes of 16 mL from split apheresis units and whole-blood derived pools, inoculated into aerobic and anaerobic culture bottles (8 mL each), with a shelf-life of 7 days. Pathogen reduction using amotosalen has been in use in Europe since 2002, and was approved for use in the US in 2014. In the US, recent FDA guidance, effective October 2021, recommended several strategies to limit bacterial contamination of platelet products, including pathogen reduction, variants of the UK LVDS method and several two-step strategies, with shelf-life ranging from 3 to 7 days. The issues associated with bacterial contamination and these strategies are discussed in this review.


α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2.

  • Lauren R Kett‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2015‎

Accumulating evidence from genetic and biochemical studies implicates dysfunction of the autophagic-lysosomal pathway as a key feature in the pathogenesis of Parkinson's disease (PD). Most studies have focused on accumulation of neurotoxic α-synuclein secondary to defects in autophagy as the cause of neurodegeneration, but abnormalities of the autophagic-lysosomal system likely mediate toxicity through multiple mechanisms. To further explore how endolysosomal dysfunction causes PD-related neurodegeneration, we generated a murine model of Kufor-Rakeb syndrome (KRS), characterized by early-onset Parkinsonism with additional neurological features. KRS is caused by recessive loss-of-function mutations in the ATP13A2 gene encoding the endolysosomal ATPase ATP13A2. We show that loss of ATP13A2 causes a specific protein trafficking defect, and that Atp13a2 null mice develop age-related motor dysfunction that is preceded by neuropathological changes, including gliosis, accumulation of ubiquitinated protein aggregates, lipofuscinosis, and endolysosomal abnormalities. Contrary to predictions from in vitro data, in vivo mouse genetic studies demonstrate that these phenotypes are α-synuclein independent. Our findings indicate that endolysosomal dysfunction and abnormalities of α-synuclein homeostasis are not synonymous, even in the context of an endolysosomal genetic defect linked to Parkinsonism, and highlight the presence of α-synuclein-independent neurotoxicity consequent to endolysosomal dysfunction.


Injury-induced gp130 cytokine signaling in peripheral ganglia is reduced in diabetes mellitus.

  • Jon P Niemi‎ et al.
  • Experimental neurology‎
  • 2017‎

Neuropathy is a major diabetic complication. While the mechanism of this neuropathy is not well understood, it is believed to result in part from deficient nerve regeneration. Work from our laboratory established that gp130 family of cytokines are induced in animals after axonal injury and are involved in the induction of regeneration-associated genes (RAGs) and in the conditioning lesion response. Here, we examine whether a reduction of cytokine signaling occurs in diabetes. Streptozotocin (STZ) was used to destroy pancreatic β cells, leading to chronic hyperglycemia. Mice were injected with either low doses of STZ (5×60mg/kg) or a single high dose (1×200mg/kg) and examined after three or one month, respectively. Both low and high dose STZ treatment resulted in sustained hyperglycemia and functional deficits associated with the presence of both sensory and autonomic neuropathy. Diabetic mice displayed significantly reduced intraepidermal nerve fiber density and sudomotor function. Furthermore, low and high dose diabetic mice showed significantly reduced tactile touch sensation measured with Von Frey monofilaments. To look at the regenerative and injury-induced responses in diabetic mice, neurons in both superior cervical ganglia (SCG) and the 4th and 5th lumbar dorsal root ganglia (DRG) were unilaterally axotomized. Both high and low dose diabetic mice displayed significantly less axonal regeneration in the sciatic nerve, when measured in vivo, 48h after crush injury. Significantly reduced induction of two gp130 cytokines, leukemia inhibitory factor and interleukin-6, occurred in diabetic animals in SCG 6h after injury compared to controls. Injury-induced expression of interleukin-6 was also found to be significantly reduced in the DRG at 6h after injury in low and high dose diabetic mice. These effects were accompanied by reduced phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream effector of the gp130 signaling pathway. We also found decreased induction of several gp130-dependent RAGs, including galanin and vasoactive intestinal peptide. Together, these data suggest a novel mechanism for the decreased response of diabetic sympathetic and sensory neurons to injury.


HS1BP3 negatively regulates autophagy by modulation of phosphatidic acid levels.

  • Petter Holland‎ et al.
  • Nature communications‎
  • 2016‎

A fundamental question is how autophagosome formation is regulated. Here we show that the PX domain protein HS1BP3 is a negative regulator of autophagosome formation. HS1BP3 depletion increased the formation of LC3-positive autophagosomes and degradation of cargo both in human cell culture and in zebrafish. HS1BP3 is localized to ATG16L1- and ATG9-positive autophagosome precursors and we show that HS1BP3 binds phosphatidic acid (PA) through its PX domain. Furthermore, we find the total PA content of cells to be significantly upregulated in the absence of HS1BP3, as a result of increased activity of the PA-producing enzyme phospholipase D (PLD) and increased localization of PLD1 to ATG16L1-positive membranes. We propose that HS1BP3 regulates autophagy by modulating the PA content of the ATG16L1-positive autophagosome precursor membranes through PLD1 activity and localization. Our findings provide key insights into how autophagosome formation is regulated by a novel negative-feedback mechanism on membrane lipids.


Gasdermins and pannexin-1 mediate pathways of chemotherapy-induced cell lysis in hematopoietic malignancies.

  • Bowen Zhou‎ et al.
  • Science signaling‎
  • 2022‎

Pyroptosis is a mechanism of programmed, necrotic cell death mediated by gasdermins, a family of pore-forming proteins. Caspase-1 activates gasdermin D (GSDMD) under inflammatory conditions, whereas caspase-3 activates GSDME under apoptotic conditions, such as those induced by chemotherapy. These pathways are thought to be separate. However, we found that they are part of an integrated network of gatekeepers that enables pyroptotic cell death. We observed that GSDMD was the primary pyroptotic mediator in cultured blood cells in response to doxorubicin and etoposide, two common chemotherapies for hematopoietic malignancies. Upon treatment, the channel protein pannexin-1 (PANX1), which is stimulated by the initiation of apoptosis, increased membrane permeability to induce K+ efflux-driven activation of the NLRP3 inflammasome and GSDMD. However, either PANX1 or GSDME could also be the primary mediator of chemotherapy-induced pyroptosis when present at higher amounts. The most abundant pore-forming protein in acute myeloid leukemias from patients predicted the cell death pathway in response to chemotherapy. This interconnected network, a multistep switch that converts apoptosis to pyroptosis, could be clinically titratated to modulate cell death with regard to antitumor immunity or tumor lysis syndrome in patients.


Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum.

  • Sonia Gulati‎ et al.
  • Cell host & microbe‎
  • 2015‎

During its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape during P. falciparum sexual and asexual blood stage (ABS) development. Using liquid chromatography-mass spectrometry, we analyzed 304 lipids constituting 24 classes in ABS parasites, infected red blood cell (RBC)-derived microvesicles, gametocytes, and uninfected RBCs. Ten lipid classes were previously uncharacterized in P. falciparum, and 70%-75% of the lipid classes exhibited changes in abundance during ABS and gametocyte development. Utilizing compounds that target lipid metabolism, we affirmed the essentiality of major classes, including triacylglycerols. These studies highlight the interplay between host and parasite lipid metabolism and provide a comprehensive analysis of P. falciparum lipids with candidate pathways for drug discovery efforts.


Gene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma - a retrospective study using TCGA database.

  • Jingcheng Zhou‎ et al.
  • Aging‎
  • 2019‎

m6A is the most common form of mRNA modification. However, little is known about its role in clear cell renal cell carcinoma (ccRCC). This study aims to identify gene signatures and prognostic values of m6A regulators in ccRCC. In this study, a total of 528 ccRCC patients from TCGA database with sequencing and CNV data were included. Survival analysis was performed using log-rank tests and Cox regression model. The association between alteration of m6A regulators and clinicopathological characteristics was examined using chi-square test. The results showed that alteration of m6A regulators was associated with pathologic stage. Patients with any CNVs of the regulatory genes had worse OS and DFS than those with diploid genes. Moreover, deletion of m6A "writer" genes was an independent risk factor for OS, and copy number gain of "eraser" genes could magnify the effect in a synergistic way. Additionally, low expression of the writer gene METTL3 was related to activations of adipogenesis and mTOR pathways. Thus, we for the first time determined genetic alterations of m6A regulators in ccRCC and found a significant relationship between the alterations and worse clinical characteristics. The findings provide us clues to understand epigenetic modification of RNA in ccRCC.


Caspase-1 Engages Full-Length Gasdermin D through Two Distinct Interfaces That Mediate Caspase Recruitment and Substrate Cleavage.

  • Zhonghua Liu‎ et al.
  • Immunity‎
  • 2020‎

The recognition and cleavage of gasdermin D (GSDMD) by inflammatory caspases-1, 4, 5, and 11 are essential steps in initiating pyroptosis after inflammasome activation. Previous work has identified cleavage site signatures in substrates such as GSDMD, but it is unclear whether these are the sole determinants for caspase engagement. Here we report the crystal structure of a complex between human caspase-1 and the full-length murine GSDMD. In addition to engagement of the GSDMD N- and C-domain linker by the caspase-1 active site, an anti-parallel β sheet at the caspase-1 L2 and L2' loops bound a hydrophobic pocket within the GSDMD C-terminal domain distal to its N-terminal domain. This "exosite" interface endows an additional function for the GSDMD C-terminal domain as a caspase-recruitment module besides its role in autoinhibition. Our study thus reveals dual-interface engagement of GSDMD by caspase-1, which may be applicable to other physiological substrates of caspases.


Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast.

  • Jason D Vevea‎ et al.
  • Developmental cell‎
  • 2015‎

The immediate responses to inhibition of phosphatidylcholine (PC) biosynthesis in yeast are altered phospholipid levels, slow growth, and defects in the morphology and localization of ER and mitochondria. With chronic lipid imbalance, yeast adapt. Lipid droplet (LD) biogenesis and conversion of phospholipids to triacylglycerol are required for restoring some phospholipids to near-wild-type levels. We confirmed that the unfolded protein response is activated by this lipid stress and find that Hsp104p is recruited to ER aggregates. We also find that LDs form at ER aggregates, contain polyubiquitinated proteins and an ER chaperone, and are degraded in the vacuole by a process resembling microautophagy. This process, microlipophagy, is required for restoration of organelle morphology and cell growth during adaptation to lipid stress. Microlipophagy does not require ATG7 but does requires ESCRT components and a newly identified class E VPS protein that localizes to ER and is upregulated by lipid imbalance.


Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism.

  • Catherine Marquer‎ et al.
  • Nature communications‎
  • 2016‎

Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann-Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer.


Hemangioblastoma Instead of Renal Cell Carcinoma Plays a Major Role in the Unfavorable Overall Survival of Von Hippel-Lindau Disease Patients.

  • Bowen Zhou‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome characterized by poor survival. The effect of the involvement of each organ on survival remains unclear. Our study aimed to study the effect of the involvement of each organ on survival in VHL disease patients. We retrospectively analyzed 336 patients from 125 families. The onset age was compared between different groups using Mann-Whitney U test and Kruskal-Wallis test. Univariate and multivariate time-dependent Cox regression analyses were conducted to evaluate how survival was influenced by the involvement of each organ. The median survival time for VHL disease patients was 66 years. The onset age was earlier in the central nervous system (CNS) group than in the abdominal group. The involvement of central nervous system hemangioblastoma (CHB) and retinal hemangioblastoma (RA) were independent risk factors for overall survival. The involvement of renal cell carcinoma (RCC) was not a significant risk factor for overall survival. Only RA was a risk factor for CHB-specific survival. This study analyzed the relationship between organ involvement and survival of VHL patients. This may help guide future genetic counseling and clinical decision-making.


Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases.

  • Bowen Zhou‎ et al.
  • Cell reports‎
  • 2021‎

Cellular inflammasome activation causes caspase-1 cleavage of the pore-forming protein gasdermin D (GSDMD) with subsequent pyroptotic cell death and cytokine release. Here, we clarify the ambiguous role of the related family member gasdermin E (GSDME) in this process. Inflammasome stimulation in GSDMD-deficient cells led to apoptotic caspase cleavage of GSDME. Endogenous GSDME activation permitted sublytic, continuous interleukin-1β (IL-1β) release and membrane leakage, even in GSDMD-sufficient cells, whereas ectopic expression led to pyroptosis with GSDME oligomerization and complete liberation of IL-1β akin to GSDMD pyroptosis. We find that NLRP3 and NLRP1 inflammasomes ultimately rely concurrently on both gasdermins for IL-1β processing and release separately from their ability to induce cell lysis. Our study thus identifies GSDME as a conduit for IL-1β release independent of its ability to cause cell death.


Associations of iron status with apolipoproteins and lipid ratios: a cross-sectional study from the China Health and Nutrition Survey.

  • Bowen Zhou‎ et al.
  • Lipids in health and disease‎
  • 2020‎

Iron overload has been found to be related with various cardiometabolic disorders, like dyslipidemia, metabolic syndrome, and diabetes. The disturbance of the iron status and lipid metabolism can contribute to organ damage such as atherosclerotic plaque growth and instability. An assessment on the associations of iron status with apolipoproteins and lipid ratios would be informative for maintenance of metabolic homeostasis and hinderance of disease progression. Hence, this study aims to establish the relationships of iron status with apolipoproteins and lipid ratios.


Chemical Modulation of Gasdermin-Mediated Pyroptosis and Therapeutic Potential.

  • Christopher B Ryder‎ et al.
  • Journal of molecular biology‎
  • 2022‎

Pyroptosis, a lytic form of programmed cell death, both stimulates effective immune responses and causes tissue damage. Gasdermin (GSDM) proteins are a family of pore-forming executors of pyroptosis. While the most-studied member, GSDMD, exerts critical functions in inflammasome biology, emerging evidence demonstrates potential broad relevance for GSDM-mediated pyroptosis across diverse pathologies. In this review, we describe GSDM biology, outline conditions where inflammasomes and GSDM-mediated pyroptosis represent rational therapeutic targets, and delineate strategies to manipulate these central immunologic processes for the treatment of human disease.


Sirtuin 2 Prevents Liver Steatosis and Metabolic Disorders by Deacetylation of Hepatocyte Nuclear Factor 4α.

  • Huihui Ren‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2021‎

Sirtuin 2 (SIRT2), an NAD+ -dependent deacetylase, is involved in various cellular processes regulating metabolic homeostasis and inflammatory responses; however, its role in hepatic steatosis and related metabolic disorders is unknown.


Whole-transcriptome sequencing identifies neuroinflammation, metabolism and blood-brain barrier related processes in the hippocampus of aged mice during perioperative period.

  • Zizheng Suo‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2022‎

Perioperative neurocognitive disorders (PND) occur frequently after surgery and anesthesia, especially in aged patients. Previous studies have shown multiple PND related mechanisms in the hippocampus; however, their relationships remain unclear. Meanwhile, the perioperative neuropathological processes are sophisticated and changeable, single period study could not reveal the accurate mechanisms. Thus, multiperiod whole-transcriptome study is necessary to elucidate the gene expression patterns during perioperative period.


Sphingosine-1-Phosphate Alleviates Irradiation Induced Salivary Gland Hypofunction through Preserving Endothelial Cells and Resident Macrophages.

  • Tao Yang‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2022‎

Radiotherapy for head-and-neck cancers frequently causes long-term hypofunction of salivary glands that severely compromises quality of life and is difficult to treat. Here, we studied effects and mechanisms of Sphingosine-1-phosphate (S1P), a versatile signaling sphingolipid, in preventing irreversible dry mouth caused by radiotherapy. Mouse submandibular glands (SMGs) were irradiated with or without intra-SMG S1P pretreatment. The saliva flow rate was measured following pilocarpine stimulation. The expression of genes related to S1P signaling and radiation damage was examined by flow cytometry, immunohistochemistry, quantitative RT-PCR, Western blotting, and/or single-cell RNA-sequencing. S1P pretreatment ameliorated irradiation-induced salivary dysfunction in mice through a decrease in irradiation-induced oxidative stress and consequent apoptosis and cellular senescence, which is related to the enhancement of Nrf2-regulated anti-oxidative response. In mouse SMGs, endothelial cells and resident macrophages are the major cells capable of producing S1P and expressing the pro-regenerative S1P receptor S1pr1. Both mouse SMGs and human endothelial cells are protected from irradiation damage by S1P pretreatment, likely through the S1pr1/Akt/eNOS axis. Moreover, intra-SMG-injected S1P did not affect the growth and radiosensitivity of head-and-neck cancer in a mouse model. These data indicate that S1P signaling pathway is a promising target for alleviating irradiation-induced salivary gland hypofunction.


Effects of APOE4 allelic dosage on lipidomic signatures in the entorhinal cortex of aged mice.

  • André Miguel Miranda‎ et al.
  • Translational psychiatry‎
  • 2022‎

Apolipoprotein E ε4 (APOE4) is the primary genetic risk factor for the late-onset form of Alzheimer's disease (AD). Although the reason for this association is not completely understood, researchers have uncovered numerous effects of APOE4 expression on AD-relevant brain processes, including amyloid beta (Aβ) accumulation, lipid metabolism, endosomal-lysosomal trafficking, and bioenergetics. In this study, we aimed to determine the effect of APOE4 allelic dosage on regional brain lipid composition in aged mice, as well as in cultured neurons. We performed a targeted lipidomic analysis on an AD-vulnerable brain region (entorhinal cortex; EC) and an AD-resistant brain region (primary visual cortex; PVC) from 14-15 month-old APOE3/3, APOE3/4, and APOE4/4 targeted replacement mice, as well as on neurons cultured with conditioned media from APOE3/3 or APOE4/4 astrocytes. Our results reveal that the EC possesses increased susceptibility to APOE4-associated lipid alterations compared to the PVC. In the EC, APOE4 expression showed a dominant effect in decreasing diacylglycerol (DAG) levels, and a semi-dominant, additive effect in the upregulation of multiple ceramide, glycosylated sphingolipid, and bis(monoacylglycerol)phosphate (BMP) species, lipids known to accumulate as a result of endosomal-lysosomal dysfunction. Neurons treated with conditioned media from APOE4/4 vs. APOE3/3 astrocytes showed similar alterations of DAG and BMP species to those observed in the mouse EC. Our results suggest that APOE4 expression differentially modulates regional neuronal lipid signatures, which may underlie the increased susceptibility of EC-localized neurons to AD pathology.


Crystal Structures of the Full-Length Murine and Human Gasdermin D Reveal Mechanisms of Autoinhibition, Lipid Binding, and Oligomerization.

  • Zhonghua Liu‎ et al.
  • Immunity‎
  • 2019‎

Gasdermin D (GSDMD) is an effector molecule for pyroptosis downstream of canonical and noncanonical inflammasome signaling pathways. Cleavage of GSDMD by inflammatory caspases triggers the oligomerization and lipid binding by its N-terminal domain, which assembles membrane pores, whereas its C-terminal domain binds the N-terminal domain to inhibit pyroptosis. Despite recent progress in our understanding of the structure and function of the murine gasdermin A3 (mGSDMA3), the molecular mechanisms of GSDMD activation and regulation remain poorly characterized. Here, we report the crystal structures of the full-length murine and human GSDMDs, which reveal the architecture of the GSDMD N-terminal domains and demonstrate distinct and common features of autoinhibition among gasdermin family members utilizing their β1-β2 loops. Disruption of the intramolecular domain interface enhanced pyroptosis, whereas mutations at the predicted lipid-binding or oligomerization surface reduced cytolysis. Our study provides a framework for understanding the autoinhibition, lipid binding, and oligomerization of GSDMD by using overlapping interfaces.


The Efficacy and Safety of Tyrosine Kinase Inhibitors for Von Hippel-Lindau Disease: A Retrospective Study of 32 Patients.

  • Kaifang Ma‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Background: Von Hippel-Lindau (VHL) disease is an autosomal-dominant hereditary cancer syndrome. Currently, studies on tyrosine kinase inhibitor (TKI) therapy for VHL disease are scarce. In this study, we retrospectively evaluated the efficacy and safety of four TKIs in patients with VHL disease. Methods: Patients diagnosed with VHL disease who were receiving TKIs were recruited. Patients were treated with sunitinib (n = 12), sorafenib (n = 11), axitinib (n = 6), or pazopanib (n = 3). The therapeutic response was evaluated according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Results: From July 2009 to September 2018, 32 patients with VHL disease were eligible and included in this study. The median duration of TKI therapy was 22 months (IQR 8.5-44.75), and the median follow-up period was 31.5 months (IQR 13.5-63.5). According to the RECIST, 9 (28%) of 32 patients showed a partial response, 15 (47%) achieved stable disease, and eight exhibited continued disease progression. A partial response was observed in 11 (31%) of 36 renal cell carcinomas, 4 (27%) of 15 pancreatic lesions, and 1 (20%) of five central nervous system (CNS) hemangioblastomas. The average tumor size decreased significantly for renal cell carcinomas (P = 0.0001), renal cysts (P = 0.027), and pancreatic lesions (P = 0.003) after TKI therapy. Common side effects included hand-foot skin reactions, diarrhea, alopecia, thrombocytopenia, and fatigue. Conclusions: Partial alleviation of VHL disease-related tumors can be achieved by TKI therapies in some patients, providing an alternative treatment strategy, and the side effects of TKIs are acceptable. Larger prospective studies are warranted to further evaluate the efficacy and safety of TKIs in patients with VHL disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: