Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

Structural relations of convenience food satisfaction and quality of life according to dietary style: Focusing on singles in metropolitan area of Korea.

  • Boram Kim‎ et al.
  • Nutrition research and practice‎
  • 2014‎

Although the issues of singles' dietary style and quality of life are becoming important due to the increasing number of singles with economic power, little research has been conducted to date on singles' use of convenience food and quality of life in relation to their dietary style. Thus, the present study intends to provide basic data to improve the quality of life by determining the current status of the use of convenience food and explicating its relationship with quality of life through analyzing the dietary lifestyles of the singles.


Prolonged MEK inhibition leads to acquired resistance and increased invasiveness in KRAS mutant gastric cancer.

  • Kyoung-Min Choi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Gastric cancer (GC) is one of the most common causes of cancer-associated death. However, traditional therapeutic strategies have failed to significantly improve the survival of patient with advanced GC. While KRAS mutations have been found in some patients with gastric cancer, an effective therapy to treat KRAS-driven gastric cancer has not been established yet. To provide a rationale for clinical application of kinase inhibitors targeting RAS pathways, we first determined the sensitivity of GC cell lines harboring KRAS mutations or amplification to RAS pathway inhibitors. We found that MAPK pathway inhibitors (MEKi and ERKi) were more effective than AKT inhibitor, suggesting that KRAS-driven gastric cancer cells are dependent on MAPK pathway for survival. Further, we established a KRAS mutant GC cell line with acquired resistance to MEK inhibitors in order to mimic clinical situation of kinase inhibitor resistance. A comprehensive analysis of tyrosine phosphorylation in receptor tyrosine kinases in combination with small molecule chemical library screening revealed upregulated c-MET phosphorylation in this resistance cell line with elevated sensitivity to c-MET TKI (crizotinib) and PI3K/mTOR dual inhibitor (BEZ235). We also showed that migration and invasion of resistant cells were promoted, and crizotinib and BEZ235 could inhibit this malignant phenotype. Overall, our results indicate that prolonged MAPK pathway inhibition could result in acquired resistance which is associated with increased malignant phenotype in KRAS mutant GC and pharmacological targeting c-MET and PI3K/mTOR could overcome this problem.


Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands.

  • Woosuk Lee‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

The development of blue-emissive InP quantum dots (QDs) still lags behind that of the red and green QDs because of the difficulty in controlling the reactivity of the small InP core. In this study, the reaction kinetics of the ZnS shell was controlled by varying the length of the hydrocarbon chain in alkanethiols for the synthesis of the small InP core. The reactive alkanethiol with a short hydrocarbon chain forms the ZnS shell rapidly and prevents the growth of the InP core, thus reducing the emission wavelength. In addition, the length of the hydrocarbon chain in the fatty acid was varied to reduce the nucleation kinetics of the core. The fatty acid with a long hydrocarbon chain exhibited a long emission wavelength as a result of the rapid nucleation and growth, due to the insufficient In-P-Zn complex by the steric effect. Blue-emissive InP/GaP/ZnS QDs were synthesized with hexanethiol and lauryl acid, exhibiting a photoluminescence (PL) peak of 485 nm with a full width at half-maximum of 52 nm and a photoluminescence quantum yield of 45%. The all-solution processed quantum dot light-emitting diodes were fabricated by employing the aforementioned blue-emissive QDs as an emitting layer, and the resulting device exhibited a peak luminance of 1045 cd/m2, a current efficiency of 3.6 cd/A, and an external quantum efficiency of 1.0%.


Changes in Cellular Localization of Inter-Alpha Inhibitor Proteins after Cerebral Ischemia in the Near-Term Ovine Fetus.

  • Kazuki Hatayama‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Inter-alpha Inhibitor Proteins (IAIPs) are key immunomodulatory molecules. Endogenous IAIPs are present in human, rodent, and sheep brains, and are variably localized to the cytoplasm and nuclei at multiple developmental stages. We have previously reported that ischemia-reperfusion (I/R) reduces IAIP concentrations in the fetal sheep brain. In this study, we examined the effect of I/R on total, cytoplasmic, and nuclear expression of IAIPs in neurons (NeuN+), microglia (Iba1+), oligodendrocytes (Olig2+) and proliferating cells (Ki67+), and their co-localization with histones and the endoplasmic reticulum in fetal brain cells. At 128 days of gestation, fetal sheep were exposed to Sham (n = 6) or I/R induced by cerebral ischemia for 30 min with reperfusion for 7 days (n = 5). Although I/R did not change the total number of IAIP+ cells in the cerebral cortex or white matter, cells with IAIP+ cytoplasm decreased, whereas cells with IAIP+ nuclei increased in the cortex. I/R reduced total neuronal number but did not change the IAIP+ neuronal number. The proportion of cytoplasmic IAIP+ neurons was reduced, but there was no change in the number of nuclear IAIP+ neurons. I/R increased the number of microglia and decreased the total numbers of IAIP+ microglia and nuclear IAIP+ microglia, but not the number of cytoplasmic IAIP+ microglia. I/R was associated with reduced numbers of oligodendrocytes and increased proliferating cells, without changes in the subcellular IAIP localization. IAIPs co-localized with the endoplasmic reticulum and histones. In conclusion, I/R alters the subcellular localization of IAIPs in cortical neurons and microglia but not in oligodendrocytes or proliferating cells. Taken together with the known neuroprotective effects of exogenous IAIPs, we speculate that endogenous IAIPs may play a role during recovery from I/R.


PRR16/Largen Induces Epithelial-Mesenchymal Transition through the Interaction with ABI2 Leading to the Activation of ABL1 Kinase.

  • Gyeoung Jin Kang‎ et al.
  • Biomolecules & therapeutics‎
  • 2022‎

Advanced or metastatic breast cancer affects multiple organs and is a leading cause of cancer-related death. Cancer metastasis is associated with epithelial-mesenchymal metastasis (EMT). However, the specific signals that induce and regulate EMT in carcinoma cells remain unclear. PRR16/Largen is a cell size regulator that is independent of mTOR and Hippo signalling pathways. However, little is known about the role PRR16 plays in the EMT process. We found that the expression of PRR16 was increased in mesenchymal breast cancer cell lines. PRR16 overexpression induced EMT in MCF7 breast cancer cells and enhances migration and invasion. To determine how PRR16 induces EMT, the binding proteins for PRR16 were screened, revealing that PRR16 binds to Abl interactor 2 (ABI2). We then investigated whether ABI2 is involved in EMT. Gene silencing of ABI2 induces EMT, leading to enhanced migration and invasion. ABI2 is a gene that codes for a protein that interacts with ABL proto-oncogene 1 (ABL1) kinase. Therefore, we investigated whether the change in ABI2 expression affected the activation of ABL1 kinase. The knockdown of ABI2 and PRR16 overexpression increased the phosphorylation of Y412 in ABL1 kinase. Our results suggest that PRR16 may be involved in EMT by binding to ABI2 and interfering with its inhibition of ABL1 kinase. This indicates that ABL1 kinase inhibitors may be potential therapeutic agents for the treatment of PRR16-related breast cancer.


A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect.

  • Kallyanashis Paul‎ et al.
  • PloS one‎
  • 2016‎

A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225).


Tuning surface functionalities of sub-10 nm-sized nanocarriers to target outer retina in designing drug delivery agents for intravitreal administration.

  • Suyeon You‎ et al.
  • Biomaterials‎
  • 2020‎

Age-related macular degeneration (AMD) is one of the leading causes of irreversible blindness, generally affecting people over 50 years of age in industrialized countries. Despite the effectiveness of anti-vascular endothelial growth factor (VEGF) therapy in attenuating the growth of new blood vessels, substantial visual improvements are rare with this complex disease. Furthermore, the current regimen of repeated monthly intravitreal injections of drugs can result in serious side effects. Combination therapies-to complement anti-VEGF alone-with a prolonged therapeutic effect and efficient delivery to the intended site are urgently needed, which could be realized through the use of carefully designed nanocarriers. To understand the physicochemical effects (e.g., size, charge, geometry) of intravitreally administered nanocarriers on their bioavailability, distribution, and targeting efficiency across multiple layers of the retina, here we prepared seven different types of surface-functionalized water-soluble dendritic nanocarriers with hydrodynamic sizes mostly under 5 nm. A similar stoichiometric amount of fluorophore was covalently attached to each of these biocompatible nanocarriers for quantitative analyses by confocal microscopy of cryosectioned healthy mouse eyes. Interestingly, at 24 h post-injection, the nanocarrier with multiple copies of glucosamine on the surface (DNSG) accumulated predominantly in the photoreceptor layer and the retinal pigment epithelium (RPE), which are speculated to be associated with AMD pathogenesis (i.e., target sites). Furthermore, extended residence at these outer retinal layers was demonstrated by DNSG, which appeared to gradually turn into micron-scale particles potentially through aggregation. Our systematic findings may provide useful guidelines for the rational design of intravitreal nanocarriers to treat vision-threatening retinal diseases, including AMD.


Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila.

  • Kyung-Ah Lee‎ et al.
  • Cell host & microbe‎
  • 2018‎

DUOX, a member of the NADPH oxidase family, acts as the first line of defense against enteric pathogens by producing microbicidal reactive oxygen species. DUOX is activated upon enteric infection, but the mechanisms regulating DUOX activity remain incompletely understood. Using Drosophila genetic tools, we show that enteric infection results in "pro-catabolic" signaling that initiates metabolic reprogramming of enterocytes toward lipid catabolism, which ultimately governs DUOX homeostasis. Infection induces signaling cascades involving TRAF3 and kinases AMPK and WTS, which regulate TOR kinase to control the balance of lipogenesis versus lipolysis. Enhancing lipogenesis blocks DUOX activity, whereas stimulating lipolysis via ATG1-dependent lipophagy is required for DUOX activation. Drosophila with altered activity in TRAF3-AMPK/WTS-ATG1 pathway components exhibit abolished infection-induced lipolysis, reduced DUOX activation, and enhanced susceptibility to enteric infection. Thus, this work uncovers signaling cascades governing inflammation-induced metabolic reprogramming and provides insight into the pathophysiology of immune-metabolic interactions in the microbe-laden gut epithelia.


The First Korean Case of Griscelli Syndrome Type 2 With Hemophagocytic Lymphohistiocytosis and Partial Albinism.

  • Youngeun Lee‎ et al.
  • Annals of laboratory medicine‎
  • 2022‎

No abstract available


Changes in serum fibronectin levels predict tumor recurrence in patients with early hepatocellular carcinoma after curative treatment.

  • Sun Ah Kim‎ et al.
  • Scientific reports‎
  • 2020‎

Fibronectin, a matrix glycoprotein aberrantly expressed in various tumor cells, is a known candidate biomarker for the early diagnosis of hepatocellular carcinoma (HCC). In this study, we investigated whether serum fibronectin levels could predict tumor recurrence in patients with early-stage HCC after curative treatment. A total of 83 patients who showed complete response after initial curative treatment were included. The levels of serum fibronectin at baseline and 4-6 weeks after initial treatment were analyzed with regard to their associations with recurrence. Multivariate logistic regression analyses were performed to construct a prognostic nomogram. Baseline fibronectin levels were not significantly correlated with tumor size, number, stage, and serum α-fetoprotein levels. However, decrease in serum fibronectin levels after treatment was significantly associated with reduced HCC recurrence in multivariate logistic regression (odds ratio, 0.009; p < 0.001). Furthermore, a nomogram consisting of gender and changes in serum fibronectin showed a good discriminatory capability for the prediction of HCC recurrence with an area under the receiver-operating curve of 0.87. In conclusion, changes in serum fibronectin levels may be a surrogate indicator for assessment of treatment response in patients with early HCC after curative treatment.


Torreya nucifera seed oil improves 3T3-L1 adipocyte differentiation.

  • Eunbi Koh‎ et al.
  • BMC complementary medicine and therapies‎
  • 2021‎

Adipose tissue is a critical regulator of lipid storage and endocrine function. Impairment of the recruitment of new adipocytes in the adipose tissue is associated with ectopic fat accumulation, diabetes and insulin resistance. Torreya nucifera, an evergreen conifer that grows in warm temperate climates, has been found to exert beneficial effects against inflammation, infection and diabetes. However, the molecular mechanisms responsible for these effects at the cellular level remain unknown. This study aimed to investigate effects of Torreya nucifera seed oil (TNSO) on 3T3-L1 adipocyte differentiation and its underlying regulatory mechanism.


A Cell-Penetrant Peptide Disrupting the Transcription Factor CP2c Complexes Induces Cancer-Specific Synthetic Lethality.

  • Seung Han Son‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.


Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes.

  • Kyung-Ah Lee‎ et al.
  • Cell host & microbe‎
  • 2015‎

Genetic studies in Drosophila have demonstrated that generation of microbicidal reactive oxygen species (ROS) through the NADPH dual oxidase (DUOX) is a first line of defense in the gut epithelia. Bacterial uracil acts as DUOX-activating ligand through poorly understood mechanisms. Here, we show that the Hedgehog (Hh) signaling pathway modulates uracil-induced DUOX activation. Uracil-induced Hh signaling is required for intestinal expression of the calcium-dependent cell adhesion molecule Cadherin 99C (Cad99C) and subsequent Cad99C-dependent formation of endosomes. These endosomes play essential roles in uracil-induced ROS production by acting as signaling platforms for PLCβ/PKC/Ca2+-dependent DUOX activation. Animals with impaired Hh signaling exhibit abolished Cad99C-dependent endosome formation and reduced DUOX activity, resulting in high mortality during enteric infection. Importantly, endosome formation, DUOX activation, and normal host survival are restored by genetic reintroduction of Cad99C into enterocytes, demonstrating the important role for Hh signaling in host resistance to enteric infection.


Effects of Takju intake and moderate exercise training on brain acetylcholinesterase activity and learning ability in rats.

  • Boram Kim‎ et al.
  • Nutrition research and practice‎
  • 2011‎

Takju is a Korean alcoholic beverage made from rice, and is brewed with the yeast Saccharomyces cerevisiae. This study was conducted to evaluate the effects of exercise training and moderate Takju consumption on learning ability in 6-week old Sprague-Dawley male rats. The rats were treated with exercise and alcohol for 4 weeks in six separate groups as follows: non-exercised control (CC), exercised control (EC), non-exercised consuming ethanol (CA), exercised consuming ethanol (EA), non-exercised consuming Takju (CT), and exercised consuming Takju (ET). An AIN-93M diet was provided ad libitum. Exercise training was performed at a speed of 10 m/min for 15 minutes per day. Ethanol and Takju were administered daily for 6-7 hours to achieve an intake of about 10 ml after 12 hours of deprivation, and, thereafter, the animals were allowed free access to deionized water. A Y-shaped water maze was used from the third week to understand the effects of exercise and alcohol consumption on learning and memory. After sacrifice, brain acetylcholinesterase (AChE) activity was analyzed. Total caloric intake and body weight changes during the experiment were not significantly different among the groups. AChE activity was not significantly different among the groups. The number of errors for position reversal training in the maze was significantly smaller in the EA group than that in the CA and ET groups, and latency times were shorter in the EA group than those in the CC, EC, CT, and ET groups. The latency difference from the first to the fifth day was shortest in the ET group. The exercised groups showed more errors and latency than those of the non-exercised groups on the first day, but the data became equivalent from the second day. The results indicate that moderate exercise can increase memory and learning and that the combination of exercise and Takju ingestion may enhance learning ability.


Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling.

  • Seung Chul Shin‎ et al.
  • Science (New York, N.Y.)‎
  • 2011‎

The symbiotic microbiota profoundly affect many aspects of host physiology; however, the molecular mechanisms underlying host-microbe cross-talk are largely unknown. Here, we show that the pyrroloquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) activity of a commensal bacterium, Acetobacter pomorum, modulates insulin/insulin-like growth factor signaling (IIS) in Drosophila to regulate host homeostatic programs controlling developmental rate, body size, energy metabolism, and intestinal stem cell activity. Germ-free animals monoassociated with PQQ-ADH mutant bacteria displayed severe deregulation of developmental and metabolic homeostasis. Importantly, these defects were reversed by enhancing host IIS or by supplementing the diet with acetic acid, the metabolic product of PQQ-ADH.


Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices.

  • Rui Kan‎ et al.
  • Developmental biology‎
  • 2011‎

Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement.


Potential role for MATER in cytoplasmic lattice formation in murine oocytes.

  • Boram Kim‎ et al.
  • PloS one‎
  • 2010‎

Mater and Padi6 are maternal effect genes that are first expressed during oocyte growth and are required for embryonic development beyond the two-cell stage in the mouse. We have recently found that PADI6 localizes to, and is required for the formation of, abundant fibrillar Triton X-100 (Triton) insoluble structures termed the oocyte cytoplasmic lattices (CPLs). Given their similar expression profiles and mutant mouse phenotypes, we have been testing the hypothesis that MATER also plays a role in CPL formation and/or function.


Comprehensive genomic analyses associate UGT8 variants with musical ability in a Mongolian population.

  • Hansoo Park‎ et al.
  • Journal of medical genetics‎
  • 2012‎

Musical abilities such as recognising music and singing performance serve as means for communication and are instruments in sexual selection. Specific regions of the brain have been found to be activated by musical stimuli, but these have rarely been extended to the discovery of genes and molecules associated with musical ability.


Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2.

  • Enkhmend Enkhtaivan‎ et al.
  • Biomolecules & therapeutics‎
  • 2022‎

Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.


EBI2-expressing B cells in neuromyelitis optica spectrum disorder with AQP4-IgG: Association with acute attacks and serum cytokines.

  • Seol-Hee Baek‎ et al.
  • Journal of neuroimmunology‎
  • 2021‎

Epstein-Barr virus-induced G-protein coupled receptor 2 (EBI2) is important in regulating B cell activation. We investigated whether EBI2 expression on B cells is associated with acute attacks in neuromyelitis optica spectrum disorder with aquaporin-4 IgG (AQP4-IgG(+) NMOSD). Blood samples were collected from patients with AQP4-IgG(+) NMOSD, multiple sclerosis (MS), and patients without inflammatory demyelinating diseases (non-IDD controls). CD19+ B cells and CD4+ T cells were analyzed for surface expression of EBI2. Serum cytokine levels were also analyzed. The EBI2+CD19+ to EBI2-CD19+ cell ratio was significantly higher in patients with AQP4-IgG(+) NMOSD enrolled within 2 months of an attack than in those with non-IDDs (p = 0.007) and MS (p = 0.003). Patients with AQP4-IgG(+) NMOSD enrolled within 2 months of an attack had a higher EBI2+CD19+ cell frequency than patients with AQP4-IgG(+) NMOSD enrolled 2 months after a recent attack (p = 0.001). The EBI2+CD19+ cell frequency was positively correlated with interleukin (IL)-6 and IL-10. EBI2 expression on B cells could be associated with acute attacks of AQP4-IgG(+) NMOSD, possibly through IL-6- or IL-10-related pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: