Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Glomerular identification in the antennal lobe of the male moth Helicoverpa armigera.

  • Xin-Cheng Zhao‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

This study investigates anatomical organization of the antennal lobe (AL) glomeruli of the male cotton bollworm Helicoverpa armigera by synaptic antibody staining combined with three-dimensional reconstruction. To identify all glomeruli, their boundaries were accurately determined by means of several additional staining techniques visualizing the neuron categories forming the characteristic spherical neuropils. In total, 78-80 glomeruli were identified in the male H. armigera. The number of glomeruli was considerably larger than that previously reported in this species. Thus, compared with previous studies, we identified 15 new glomeruli, G63-G77. Most of them are located in the posterior part of the AL, which was previously considered to be a part of the protocerebrum. From the general anatomical organization of the AL glomeruli of H. armigera, we classified these neuropil structures into four groups, the macroglomerular complex, posterior complex, labial-palp pit organ glomerulus, and ordinary glomeruli. The complete identification of glomeruli is important for future studies seeking to explore further the coding mechanisms residing within the primary olfactory center of the moth brain. J. Comp. Neurol. 524:2993-3013, 2016. © 2016 Wiley Periodicals, Inc.


Tracing and 3-dimensional representation of the primary afferents from the moth ear.

  • Mikhail K Zhemchuzhnikov‎ et al.
  • Arthropod structure & development‎
  • 2014‎

Heliothine moths perceive acoustic information via two auditory sensory neurons only. Previous cobalt staining experiments have described the projection pattern of the two auditory neurons, called the A1 and the A2 cell, plus one additional neuron, the so-called B cell, up to the prothorax. We have obtained new and improved data about the projection pattern of the three sensory afferents by means of fluorescent staining experiments combined with scanning confocal microscopy. The present data show the fine structure of each sensory axon that arises from the moth ear and its ascending pathway relative to that of the others. In accordance with the previous data, the A2 auditory cell was found to extend projections in the pterothorax only. A novel finding is that terminal branches of the A2 cell cross the midline. The staining pattern of the two remaining neurons, the A1 and B cell, which project tightly together in the thoracic ganglia, differ somewhat from that previously described. As demonstrated here, one of these two neurons, the A1 cell, terminates in the prothoracic ganglion whereas the other, the B cell, projects further on via the cervical connectives to the subesophageal ganglion. The current data, therefore, indicate that none of the auditory afferents in the heliothine moth projects to the brain.


A Novel Major Output Target for Pheromone-Sensitive Projection Neurons in Male Moths.

  • Xi Chu‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2020‎

Even though insects have comparably small brains, they achieve astoundingly complex behaviors. One example is flying moths tracking minute amounts of pheromones using olfactory circuits. The tracking distance can be up to 1 km, which makes it essential that male moths respond efficiently and reliably to very few pheromone molecules. The male-specific macroglomerular complex (MGC) in the moth antennal lobe contains circuitry dedicated to pheromone processing. Output neurons from this region project along three parallel pathways, the medial, mediolateral, and lateral tracts. The MGC-neurons of the lateral tract are least described and their functional significance is mainly unknown. We used mass staining, calcium imaging, and intracellular recording/staining to characterize the morphological and physiological properties of these neurons in the noctuid moth, Helicoverpa armigera. All lateral-tract MGC neurons targeted the column, a small region within the superior intermediate neuropil. We identified this region as a unique converging site for MGC lateral-tract neurons responsive to pheromones, as well as a dense congregating site for plant odor information since a substantial number of lateral-tract neurons from ordinary glomeruli (OG) also terminates in this region. The lateral-tract MGC-neurons responded with a shorter peak latency than the well-described neurons in the medial tract. Different from the medial-tract MGC neurons encoding odor quality important for species-specific signal identification, those in the lateral tract convey a more robust and rapid signal-potentially important for fast control of hard-wired behavior.


Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata.

  • Bai-Wei Ma‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2017‎

The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior.


A unified platform to manage, share, and archive morphological and functional data in insect neuroscience.

  • Stanley Heinze‎ et al.
  • eLife‎
  • 2021‎

Insect neuroscience generates vast amounts of highly diverse data, of which only a small fraction are findable, accessible and reusable. To promote an open data culture, we have therefore developed the InsectBrainDatabase (IBdb), a free online platform for insect neuroanatomical and functional data. The IBdb facilitates biological insight by enabling effective cross-species comparisons, by linking neural structure with function, and by serving as general information hub for insect neuroscience. The IBdb allows users to not only effectively locate and visualize data, but to make them widely available for easy, automated reuse via an application programming interface. A unique private mode of the database expands the IBdb functionality beyond public data deposition, additionally providing the means for managing, visualizing, and sharing of unpublished data. This dual function creates an incentive for data contribution early in data management workflows and eliminates the additional effort normally associated with publicly depositing research data.


Distribution of tachykinin-related peptides in the brain of the tobacco budworm Heliothis virescens.

  • Xin-Cheng Zhao‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Invertebrate tachykinin-related peptides (TKRPs) comprise a group of signaling molecules having sequence similarities to mammalian tachykinins. A growing body of evidence has demonstrated the presence of TKRPs in the central nervous system of insects. In this investigation, we used an antiserum against locustatachykinin-II to reveal the distribution pattern of these peptides in the brain of the moth Heliothis virescens. Immunolabeling was found throughout the brain of the heliothine moth. Most of the roughly 500 locustatachykinin-II immunoreactive cell bodies, that is, ca. 400, were located in the protocerebrum, whereas the rest was distributed in the deutocerebrum, tritocerebrum, and the gnathal ganglion. Abundant immunoreactive processes were located in the same regions. Labeled processes in the protocerebrum were especially localized in optic lobe, central body, lateral accessory lobe, superior protocerebrum, and lateral protocerebrum, while those in the deutocerebrum were present exclusively in the antennal lobe. In addition to brain interneurons, four pairs of median neurosecretory cells in the pars intercerebralis with terminal processes in the corpora cardiaca and aorta wall were immunostained. No sexual dimorphism in immunoreactivity was found. Comparing the data obtained here with findings from other insect species reveals considerable differences, suggesting species-specific roles of tachykinin-related peptides in insects.


Coincidence of pheromone and plant odor leads to sensory plasticity in the heliothine olfactory system.

  • Elena Ian‎ et al.
  • PloS one‎
  • 2017‎

Male moths possess a highly specialized olfactory system comprised of two segregated sub-arrangements dedicated to processing information about plant odors and pheromones, respectively. Communication between these two sub-systems has been described at the peripheral level, but relatively little is known about putative interactions at subsequent synaptic relays. The male moth faces the challenge of seeking out the conspecific female in a highly dynamic odor world. The female-produced pheromone blend, which is a limited resource serving as guidance for the male, will reach his antennae in intermittent pockets of odor filaments mixed with volatiles from various plants. In the present study we performed calcium imaging for measuring odor-evoked responses in the uni-glomerular antennal-lobe projection neurons (analog to mitral cells in the vertebrate olfactory bulb) of Helicoverpa armigera. In order to investigate putative interactions between the two sub-systems tuned to plant volatiles and pheromones, respectively, we performed repeated stimulations with a selection of biologically relevant odors. We found that paired stimulation with a plant odor and the pheromone led to suppressed responses in both sub-systems as compared to those evoked during initial stimulation including application of each odor stimulus alone. The fact that the suppression persisted also after pairing, indicates the existence of a Hebbian-like plasticity in the primary olfactory center established by temporal pairing of the two odor stimulation categories.


A multisensory centrifugal neuron in the olfactory pathway of heliothine moths.

  • Xin-Cheng Zhao‎ et al.
  • The Journal of comparative neurology‎
  • 2013‎

We have characterized, by intracellular recording and staining, a unique type of centrifugal neuron in the brain olfactory center of two heliothine moth species; one in Heliothis virescens and one in Helicoverpa armigera. This unilateral neuron, which is not previously described in any moth, has fine processes in the dorsomedial region of the protocerebrum and extensive neuronal branches with blebby terminals in all glomeruli of the antennal lobe. Its soma is located dorsally of the central body close to the brain midline. Mass-fills of antennal-lobe connections with protocerebral regions showed that the centrifugal neuron is, in each brain hemisphere, one within a small group of neurons having their somata clustered. In both species the neuron was excited during application of non-odorant airborne signals, including transient sound pulses of broad bandwidth and air velocity changes. Additional responses to odors were recorded from the neuron in Heliothis virescens. The putative biological significance of the centrifugal antennal-lobe neuron is discussed with regard to its morphological and physiological properties. In particular, a possible role in multisensory processes underlying the moth's ability to adapt its odor-guided behaviors according to the sound of an echo-locating bat is considered.


Individual Neurons Confined to Distinct Antennal-Lobe Tracts in the Heliothine Moth: Morphological Characteristics and Global Projection Patterns.

  • Elena Ian‎ et al.
  • Frontiers in neuroanatomy‎
  • 2016‎

To explore fundamental principles characterizing chemosensory information processing, we have identified antennal-lobe projection neurons in the heliothine moth, including several neuron types not previously described. Generally, odor information is conveyed from the primary olfactory center of the moth brain, the antennal lobe, to higher brain centers via projection neuron axons passing along several parallel pathways, of which the medial, mediolateral, and lateral antennal-lobe tract are considered the classical ones. Recent data have revealed the projections of the individual tracts more in detail demonstrating three main target regions in the protocerebrum; the calyces are innervated mainly by the medial tract, the superior intermediate protocerebrum by the lateral tract exclusively, and the lateral horn by all tracts. In the present study, we have identified, via iontophoretic intracellular staining combined with confocal microscopy, individual projection neurons confined to the tracts mentioned above, plus two additional ones. Further, using the visualization software AMIRA, we reconstructed the stained neurons and registered the models into a standard brain atlas, which allowed us to compare the termination areas of individual projection neurons both across and within distinct tracts. The data demonstrate a morphological diversity of the projection neurons within distinct tracts. Comparison of the output areas of the neurons confined to the three main tracts in the lateral horn showed overlapping terminal regions for the medial and mediolateral tracts; the lateral tract neurons, on the contrary, targeted mostly other output areas in the protocerebrum.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: