Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

The RIKEN integrated database of mammals.

  • Hiroshi Masuya‎ et al.
  • Nucleic acids research‎
  • 2011‎

The RIKEN integrated database of mammals (http://scinets.org/db/mammal) is the official undertaking to integrate its mammalian databases produced from multiple large-scale programs that have been promoted by the institute. The database integrates not only RIKEN's original databases, such as FANTOM, the ENU mutagenesis program, the RIKEN Cerebellar Development Transcriptome Database and the Bioresource Database, but also imported data from public databases, such as Ensembl, MGI and biomedical ontologies. Our integrated database has been implemented on the infrastructure of publication medium for databases, termed SciNetS/SciNeS, or the Scientists' Networking System, where the data and metadata are structured as a semantic web and are downloadable in various standardized formats. The top-level ontology-based implementation of mammal-related data directly integrates the representative knowledge and individual data records in existing databases to ensure advanced cross-database searches and reduced unevenness of the data management operations. Through the development of this database, we propose a novel methodology for the development of standardized comprehensive management of heterogeneous data sets in multiple databases to improve the sustainability, accessibility, utility and publicity of the data of biomedical information.


High resolution intravital imaging of subcellular structures of mouse abdominal organs using a microstage device.

  • Liqin Cao‎ et al.
  • PloS one‎
  • 2012‎

Intravital imaging of brain and bone marrow cells in the skull with subcellular resolution has revolutionized neurobiology, immunology and hematology. However, the application of this powerful technology in studies of abdominal organs has long been impeded by organ motion caused by breathing and heartbeat. Here we describe for the first time a simple device designated 'microstage' that effectively reduces organ motions without causing tissue lesions. Combining this microstage device with an upright intravital laser scanning microscope equipped with a unique stick-type objective lens, the system enables subcellular-level imaging of abdominal organs in live mice. We demonstrate that this technique allows for the quantitative analysis of subcellular structures and gene expressions in cells, the tracking of intracellular processes in real-time as well as three-dimensional image construction in the pancreas and liver of the live mouse. As the aforementioned analyses based on subcellular imaging could be extended to other intraperitoneal organs, the technique should offer great potential for investigation of physiological and disease-specific events of abdominal organs. The microstage approach adds an exciting new technique to the in vivo imaging toolbox.


Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation.

  • Kazuhito Toyo-oka‎ et al.
  • The Journal of cell biology‎
  • 2008‎

Protein phosphatase 4 catalytic subunit (PP4c) is a PP2A-related protein serine/threonine phosphatase with important functions in a variety of cellular processes, including microtubule (MT) growth/organization, apoptosis, and tumor necrosis factor signaling. In this study, we report that NDEL1 is a substrate of PP4c, and PP4c selectively dephosphorylates NDEL1 at Cdk1 sites. We also demonstrate that PP4c negatively regulates Cdk1 activity at the centrosome. Targeted disruption of PP4c reveals disorganization of MTs and disorganized MT array. Loss of PP4c leads to an unscheduled activation of Cdk1 in interphase, which results in the abnormal phosphorylation of NDEL1. In addition, abnormal NDEL1 phosphorylation facilitates excessive recruitment of katanin p60 to the centrosome, suggesting that MT defects may be attributed to katanin p60 in excess. Inhibition of Cdk1, NDEL1, or katanin p60 rescues the defective MT organization caused by PP4 inhibition. Our work uncovers a unique regulatory mechanism of MT organization by PP4c through its targets Cdk1 and NDEL1 via regulation of katanin p60 distribution.


Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories.

  • Dheeraj S Roy‎ et al.
  • Cell‎
  • 2017‎

The formation and retrieval of a memory is thought to be accomplished by activation and reactivation, respectively, of the memory-holding cells (engram cells) by a common set of neural circuits, but this hypothesis has not been established. The medial temporal-lobe system is essential for the formation and retrieval of episodic memory for which individual hippocampal subfields and entorhinal cortex layers contribute by carrying out specific functions. One subfield whose function is poorly known is the subiculum. Here, we show that dorsal subiculum and the circuit, CA1 to dorsal subiculum to medial entorhinal cortex layer 5, play a crucial role selectively in the retrieval of episodic memories. Conversely, the direct CA1 to medial entorhinal cortex layer 5 circuit is essential specifically for memory formation. Our data suggest that the subiculum-containing detour loop is dedicated to meet the requirements associated with recall such as rapid memory updating and retrieval-driven instinctive fear responses.


Efficient production of large deletion and gene fragment knock-in mice mediated by genome editing with Cas9-mouse Cdt1 in mouse zygotes.

  • Saori Mizuno-Iijima‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2021‎

Genetically modified mouse models are essential for in vivo investigation of gene function and human disease research. Targeted mutations can be introduced into mouse embryos using genome editing technology such as CRISPR-Cas. Although mice with small indel mutations can be produced, the production of mice carrying large deletions or gene fragment knock-in alleles remains inefficient. We introduced the nuclear localisation property of Cdt1 protein into the CRISPR-Cas system for efficient production of genetically engineered mice. Mouse Cdt1-connected Cas9 (Cas9-mC) was present in the nucleus of HEK293T cells and mouse embryos. Cas9-mC induced a bi-allelic full deletion of Dmd, GC-rich fragment knock-in, and floxed allele knock-in with high efficiency compared to standard Cas9. These results indicate that Cas9-mC is a useful tool for producing mouse models carrying targeted mutations.


Asian Mouse Mutagenesis Resource Association (AMMRA): mouse genetics and laboratory animal resources in the Asia Pacific.

  • Hsian-Jean Chin‎ et al.
  • Mammalian genome : official journal of the International Mammalian Genome Society‎
  • 2022‎

The Asian Mouse Mutagenesis Resource Association (AMMRA) is a non-profit organization consisting of major resource and research institutions with rodent expertise from within the Asia Pacific region. For more than a decade, aiming to support biomedical research and stimulate international collaboration, AMMRA has always been a friendly and passionate ally of Asian and Australian member institutions devoted to sharing knowledge, exchanging resources, and promoting biomedical research. AMMRA is also missioned to global connection by working closely with the consortiums such as the International Mouse Phenotyping Consortium and the International Mouse Strain Resource. This review discusses the emergence of AMMRA and outlines its many roles and responsibilities in promoting, assisting, enriching research, and ultimately enhancing global life science research quality.


DAJIN enables multiplex genotyping to simultaneously validate intended and unintended target genome editing outcomes.

  • Akihiro Kuno‎ et al.
  • PLoS biology‎
  • 2022‎

Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.


Development of two mouse strains conditionally expressing bright luciferases with distinct emission spectra as new tools for in vivo imaging.

  • Toshiaki Nakashiba‎ et al.
  • Lab animal‎
  • 2023‎

In vivo bioluminescence imaging (BLI) has been an invaluable noninvasive method to visualize molecular and cellular behaviors in laboratory animals. Bioluminescent reporter mice harboring luciferases for general use have been limited to a classical luciferase, Luc2, from Photinus pyralis, and have been extremely powerful for various in vivo studies. However, applicability of reporter mice for in vivo BLI could be further accelerated by increasing light intensity through the use of other luciferases and/or by improving the biodistribution of their substrates in the animal body. Here we created two Cre-dependent reporter mice incorporating luciferases oFluc derived from Pyrocoeli matsumurai and Akaluc, both of which had been reported previously to be brighter than Luc2 when using appropriate substrates; we then tested their bioluminescence in neural tissues and other organs in living mice. When expressed throughout the body, both luciferases emitted an intense yellow (oFluc) or far-red (Akaluc) light easily visible to the naked eye. oFluc and Akaluc were similarly bright in the pancreas for in vivo BLI; however, Akaluc was superior to oFluc for brain imaging, because its substrate, AkaLumine-HCl, was distributed to the brain more efficiently than the oFluc substrate, D-luciferin. We also demonstrated that the lights produced by oFluc and Akaluc were sufficiently spectrally distinct from each other for dual-color imaging in a single living mouse. Taken together, these novel bioluminescent reporter mice are an ideal source of cells with bright bioluminescence and may facilitate in vivo BLI of various tissues/organs for preclinical and biomedical research in combination with a wide variety of Cre-driver mice.


A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by wnt inhibition.

  • Michihiko Sugimoto‎ et al.
  • Stem cell reports‎
  • 2015‎

Epiblast stem cells (EpiSCs) are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos, and thus provide a useful model for studying "primed" pluripotent states. Here, we devised a simple and robust technique to derive high-quality EpiSCs using an inhibitor of WNT secretion. Using this method, we readily established EpiSC lines with high efficiency and were able to use whole embryonic portions without having to separate the epiblast from the visceral endoderm (VE). Expression analyses revealed that these EpiSCs maintained a homogeneous, undifferentiated status, yet showed high potential for differentiation both in vitro and in teratomas. Unlike EpiSCs derived by the original protocol, new EpiSC lines required continuous treatment with the Wnt inhibitor, suggesting some intrinsic differences from the existing EpiSCs. The homogeneous properties of this new version of EpiSCs should facilitate studies on the establishment and maintenance of a "primed" pluripotent state, and directed differentiation from the primed state.


Effects of background mutations and single nucleotide polymorphisms (SNPs) on the Disc1 L100P behavioral phenotype associated with schizophrenia in mice.

  • Yosefu Arime‎ et al.
  • Behavioral and brain functions : BBF‎
  • 2014‎

Disrupted-in-schizophrenia 1 (DISC1) is a promising candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder and major depression. Several previous studies reported that mice with N-ethyl-N-nitrosourea (ENU)-induced L100P mutation in Disc1 showed some schizophrenia-related behavioral phenotypes. This line originally carried several thousands of ENU-induced point mutations in the C57BL/6 J strain and single nucleotide polymorphisms (SNPs) from the DBA/2 J inbred strain.


Devising assisted reproductive technologies for wild-derived strains of mice: 37 strains from five subspecies of Mus musculus.

  • Keiji Mochida‎ et al.
  • PloS one‎
  • 2014‎

Wild-derived mice have long offered invaluable experimental models for mouse genetics because of their high evolutionary divergence from laboratory mice. A number of wild-derived strains are available from the RIKEN BioResource Center (BRC), but they have been maintained as living stocks because of the unavailability of assisted reproductive technology (ART). In this study, we sought to devise ART for 37 wild-derived strains from five subspecies of Mus musculus maintained at the BRC. Superovulation of females was effective (more than 15 oocytes per female) for 34 out of 37 strains by treatment with either equine chorionic gonadotropin or anti-inhibin serum, depending on their genetic background (subspecies). The collected oocytes could be fertilized in vitro at mean rates of 79.0% and 54.6% by the optimized protocol using fresh or frozen-thawed spermatozoa, respectively. They were cryopreserved at the 2-cell stage by vitrification with an ethylene glycol-based solution. In total, 94.6% of cryopreserved embryos survived the vitrification procedure and restored their normal morphology after warming. A conventional embryo transfer protocol could be applied to 25 out of the 35 strains tested. In the remaining 10 strains, live offspring could be obtained by a modified embryo transfer protocol using cyclosporin A treatment and co-transfer of ICR (laboratory mouse strain) embryos. Thus, ART for 37 wild-derived strains was devised successfully and is now routinely used for their preservation and transportation. The information provided here might facilitate broader use and wider distribution of wild-derived mice for biomedical research.


High osmolality vitrification: a new method for the simple and temperature-permissive cryopreservation of mouse embryos.

  • Keiji Mochida‎ et al.
  • PloS one‎
  • 2013‎

Procedures for cryopreserving embryos vary considerably, each having its specific advantages and disadvantages in terms of technical feasibility, embryo survival yield, temperature permissibility and species- or strain-dependent applicability. Here we report a high osmolality vitrification (HOV) method that is advantageous in these respects. Cryopreservation by vitrification is generally very simple, but, unlike slow freezing, embryos should be kept at a supercooling temperature (below -130°C) to avoid cryodamage. We overcame this problem by using an HOV solution containing 42.5% (v/v) ethylene glycol, 17.3% (w/v) Ficoll and 1.0 M sucrose. This solution is more viscous than other cryopreservation solutions, but easy handling of embryos was assured by employing a less viscous equilibration solution before vitrification. Most (>80%) embryos cryopreserved in this solution survived at -80°C for at least 30 days. Normal mice were recovered even after intercontinental transportation in a conventional dry-ice package for 2-3 days, indicating that special containers such as dry shippers with liquid nitrogen vapor are unnecessary. The HOV solution could also be employed for long-term storage in liquid nitrogen, as with other conventional cryoprotectants. Finally, we confirmed that this new vitrification method could be applied successfully to embryos of all six strains of mice we have tested so far. Thus, our HOV method provides an efficient and reliable strategy for the routine cryopreservation of mouse embryos in animal facilities and biomedical laboratories, and for easy and cheap transportation.


Reverse genetics reveals single gene of every candidate on Hybrid sterility, X Chromosome QTL 2 (Hstx2) are dispensable for spermatogenesis.

  • Kento Morimoto‎ et al.
  • Scientific reports‎
  • 2020‎

F1 hybrid progenies between related subspecies often show hybrid sterility (HS) or inviability. HS is caused by failure of meiotic chromosome synapsis and sex body formation in house mouse. Previous studies identified two HS critical genomic regions named Hstx2 on Chr X and Hst1 on Chr 17 by murine forward genetic approaches. HS gene on Hst1 was reported to be Prdm9. Intersubspecific polymorphisms of Prdm9 induce HS in hybrids, and Prdm9 null mutation leads to sterility in the inbred strain. However, HS gene on Hstx2 remains unknown. Here, using knock-out studies, we showed that HS candidate genes on Hstx2 are not individually essential for spermatogenesis in B6 strain. We examined 12 genes on Hstx2: Ctag2, 4930447F04Rik, Mir743, Mir465d, Mir465c-2, Mir465b-1, Mir465c-1, Mir465, Gm1140, Gm14692, 4933436I01Rik, and Gm6812. These genes were expressed in adult testes, and showed intersubspecific polymorphisms on expressed regions. This first reverse genetic approach to identify HS gene on Hstx2 suggested that the loss of function of any one HS candidate gene does not cause complete sterility, unlike Prdm9. Thus, the mechanism(s) of HS by the HS gene on Hstx2 might be different from that of Prdm9.


Establishment and application of information resource of mutant mice in RIKEN BioResource Research Center.

  • Hiroshi Masuya‎ et al.
  • Laboratory animal research‎
  • 2021‎

Online databases are crucial infrastructures to facilitate the wide effective and efficient use of mouse mutant resources in life sciences. The number and types of mouse resources have been rapidly growing due to the development of genetic modification technology with associated information of genomic sequence and phenotypes. Therefore, data integration technologies to improve the findability, accessibility, interoperability, and reusability of mouse strain data becomes essential for mouse strain repositories. In 2020, the RIKEN BioResource Research Center released an integrated database of bioresources including, experimental mouse strains, Arabidopsis thaliana as a laboratory plant, cell lines, microorganisms, and genetic materials using Resource Description Framework-related technologies. The integrated database shows multiple advanced features for the dissemination of bioresource information. The current version of our online catalog of mouse strains which functions as a part of the integrated database of bioresources is available from search bars on the page of the Center ( https://brc.riken.jp ) and the Experimental Animal Division ( https://mus.brc.riken.jp/ ) websites. The BioResource Research Center also released a genomic variation database of mouse strains established in Japan and Western Europe, MoG+ ( https://molossinus.brc.riken.jp/mogplus/ ), and a database for phenotype-phenotype associations across the mouse phenome using data from the International Mouse Phenotyping Platform. In this review, we describe features of current version of databases related to mouse strain resources in RIKEN BioResource Research Center and discuss future views.


Novel ROSA26 Cre-reporter knock-in C57BL/6N mice exhibiting green emission before and red emission after Cre-mediated recombination.

  • Yoshikazu Hasegawa‎ et al.
  • Experimental animals‎
  • 2013‎

The Cre/loxP system is a strategy for controlling temporal and/or spatial gene expression through genome alteration in mice. As successful Cre/loxP genome alteration depends on Cre-driver mice, Cre-reporter mice are essential for validation of Cre gene expression in vivo. In most Cre-reporter mouse strains, although the presence of reporter product indicates the expression of Cre recombinase, it has remained unclear whether a lack of reporter signal indicates either no Cre recombinase expression or insufficient reporter gene promoter activity. We produced a novel ROSA26 knock-in Cre-reporter C57BL/6N strain exhibiting green emission before and red after Cre-mediated recombination, designated as strain R26GRR. Ubiquitous green fluorescence and no red fluorescence were observed in R26GRR mice. To investigate the activation of tdsRed, EGFP-excised R26GRR, R26RR, mice were produced through the crossing of C57BL/6N mice with R26GRR/Ayu1-Cre F1 mice. R26RR mice showed extraordinarily strong red fluorescence in almost all tissues examined, suggesting ubiquitous activation of the second reporter in all tissues after Cre/loxP recombination. Moreover, endothelial cell lineage and pancreatic islet-specific expression of red fluorescence were detected in R26GRR/Tie2-Cre F1 mice and R26GRR /Ins1-Cre F1 mice, respectively. These results indicated that R26GRR mice are a useful novel Cre-reporter mouse strain. In addition, R26GRR mice with a pure C57BL/6N background represent a valuable source of green-to-red photoconvertible cells following Cre/loxP recombination for application in transplantation studies. The R26GRR mouse strain will be available from RIKEN BioResource Center (http://www.brc.riken.jp/lab/animal/en/).


Generation of CRISPR/Cas9-mediated bicistronic knock-in ins1-cre driver mice.

  • Yoshikazu Hasegawa‎ et al.
  • Experimental animals‎
  • 2016‎

In the present study, we generated novel cre driver mice for gene manipulation in pancreatic β cells. Using the CRISPR/Cas9 system, stop codon sequences of Ins1 were targeted for insertion of cre, including 2A sequences. A founder of C57BL/6J-Ins1(em1 (cre) Utr) strain was produced from an oocyte injected with pX330 containing the sequences encoding gRNA and Cas9 and a DNA donor plasmid carrying 2A-cre. (R26GRR x C57BL/6J-Ins1(em1 (cre) Utr)) F1 mice were histologically characterized for cre-loxP recombination in the embryonic and adult stages; cre-loxP recombination was observed in all pancreatic islets examined in which almost all insulin-positive cells showed tdsRed fluorescence, suggesting β cell-specific recombination. Furthermore, there were no significant differences in results of glucose tolerance test among genotypes (homo/hetero/wild). Taken together, these observations indicated that C57BL/6J-Ins1(em1 (cre) Utr) is useful for studies of glucose metabolism and the strategy of bicistronic cre knock-in using the CRISPR/Cas9 system could be useful for production of cre driver mice.


Generation and characterization of Ins1-cre-driver C57BL/6N for exclusive pancreatic beta cell-specific Cre-loxP recombination.

  • Yoshikazu Hasegawa‎ et al.
  • Experimental animals‎
  • 2014‎

Cre/loxP system-mediated site-specific recombination is utilized to study gene function in vivo. Successful conditional knockout of genes of interest is dependent on the availability of Cre-driver mice. We produced and characterized pancreatic β cell-specific Cre-driver mice for use in diabetes mellitus research. The gene encoding Cre was inserted into the second exon of mouse Ins1 in a bacterial artificial chromosome (BAC). Five founder mice were produced by microinjection of linearized BAC Ins1-cre. The transgene was integrated between Mafa and the telomere on chromosome 15 in one of the founders, BAC Ins1-cre25. To investigate Cre-loxP recombination, BAC Ins1-cre25 males were crossed with two different Cre-reporters, R26R and R26GRR females. On gross observation, reporter signal after Cre-loxP recombination was detected exclusively in the adult pancreatic islets in both F1 mice. Immunohistological analysis indicated that Cre-loxP recombination-mediated reporter signal was colocalized with insulin in pancreatic islet cells of both F1 mice, but not with glucagon. Moreover, Cre-loxP recombination signal was already observed in the pancreatic islets at E13.5 in both F1 fetuses. Finally, we investigated ectopic Cre-loxP recombination for Ins1, because the ortholog Ins2 is also expressed in the brain, in addition to the pancreas. However, there was no Cre-loxP recombination-mediated reporter signal in the brain of both F1 mice. Our data suggest that BAC Ins1-cre25 mice are a useful Cre-driver C57BL/6N for pancreatic β cell-specific Cre-loxP recombination, except for crossing with knock-in mice carrying floxed gene on chromosome 15.


Mutations in the helix termination motif of mouse type I IRS keratin genes impair the assembly of keratin intermediate filament.

  • Shigekazu Tanaka‎ et al.
  • Genomics‎
  • 2007‎

Two classical mouse hair coat mutations, Rex (Re) and Rex wavy coat (Re(wc)), are linked to the type I inner root sheath (IRS) keratin genes of chromosome 11. An N-ethyl-N-nitrosourea-induced mutation, M100573, also maps close to the type I IRS keratin genes. In this study, we demonstrate that Re and M100573 mice bear mutations in the type I IRS gene Krt25; Re(wc) mice bear an additional mutation in the type I IRS gene Krt27. These three mutations are located in the helix termination motif of the 2B alpha-helical rod domain of a type I IRS keratin protein. Immunohistological analysis revealed abnormal foam-like immunoreactivity with an antibody raised to type II IRS keratin K71 in the IRS of Re/+ mice. These results suggest that the helix termination motif is essential for the proper assembly of types I and II IRS keratin protein complexes and the formation of keratin intermediate filaments.


High-throughput discovery of novel developmental phenotypes.

  • Mary E Dickinson‎ et al.
  • Nature‎
  • 2016‎

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.


Greb1 Transiently Accelerates Pancreatic β-Cell Proliferation in Diabetic Mice Exposed to Estradiol.

  • Akari Inada‎ et al.
  • The American journal of pathology‎
  • 2023‎

Decrease of pancreatic β cells leads to diabetes. In an inducible cAMP early suppressor (ICER-Iγ) transgenic mouse model of severe type 2 diabetes with reduced insulin production and depleted β cells, supplementation with high concentrations of 17β-estradiol (E2) markedly enhances β-cell proliferation and normalizes glucose levels. The current study explored the underlying mechanisms leading to a dynamic increase of β cells and pathologic changes in diabetic mice exposed to E2. Gene expression profiling of pancreatic islets of 6-month-old ICER-transgenic mice recovering from diabetes due to elevated E2 levels identified growth regulation by estrogen in breast cancer 1 (Greb1) as a gene significantly up-regulated during the recovery phase. To substantiate this, β-cell-specific Greb1-deficient mice were generated, and Greb1 was shown to be essential for recovery of depleted β cells in diabetic mice. Graft growth and glucose lowering were observed in 50 islets with increased Greb1 expression transplanted adjacent to E2 pellets beneath the kidney capsule of streptozotocin-induced diabetic mice. Greb1 expression due to a drastic increase in exogenous or endogenous E2 was transient and closely correlated with changes in E2-related and some cell cycle-related genes. These findings provide new insights into in vivo proliferation of deficient β cells and suggest the possibility of new therapeutic approaches targeting pancreatic β cells that could revolutionize the concept of diabetes treatment, which has been considered difficult to cure completely.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: