Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity.

  • Richard D'Mello‎ et al.
  • Pain‎
  • 2015‎

Activation of neuronal nitric oxide synthase, and consequent production of nitric oxide (NO), contributes to spinal hyperexcitability and enhanced pain sensation. All NOS isoforms are inhibited endogenously by asymmetric dimethylarginine, which itself is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Inhibition of DDAH can indirectly attenuate NO production by elevating asymmetric dimethylarginine concentrations. Here, we show that the DDAH-1 isoform is constitutively active in the nervous system, specifically in the spinal dorsal horn. DDAH-1 was found to be expressed in sensory neurons within both the dorsal root ganglia and spinal dorsal horn; L-291 (NG-[2-Methoxyethyl]-L-arginine methyl ester), a DDAH-1 inhibitor, reduced NO synthesis in cultured dorsal root ganglia neurons. Spinal application of L-291 decreased N-methyl-D-aspartate-dependent postdischarge and windup of dorsal horn sensory neurons--2 measures of spinal hyperexcitability. Finally, spinal application of L-291 reduced both neuronal and behavioral measures of formalin-induced central sensitization. Thus, DDAH-1 may be a potential therapeutic target in neuronal disorders, such as chronic pain, where elevated NO is a contributing factor.


Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera.

  • Ryan Patel‎ et al.
  • The European journal of neuroscience‎
  • 2015‎

Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non-sentient rats. Subcutaneous injection of 10 nm ciguatoxin-2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low-threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6-({2-[2-fluoro-6-(trifluoromethyl)phenoxy]-2-methylpropyl}carbamoyl)pyridine-3-carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co-injection with the Nav 1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity.


Antinociceptive effects of lacosamide on spinal neuronal and behavioural measures of pain in a rat model of osteoarthritis.

  • Wahida Rahman‎ et al.
  • Arthritis research & therapy‎
  • 2014‎

Alterations in voltage-gated sodium channel (VGSC) function have been linked to chronic pain and are good targets for analgesics. Lacosamide (LCM) is a novel anticonvulsant that enhances the slow inactivation state of VGSCs. This conformational state can be induced by repeated neuronal firing and/or under conditions of sustained membrane depolarisation, as is expected for hyperexcitable neurones in pathological conditions such as epilepsy and neuropathy, and probably osteoarthritis (OA). In this study, therefore, we examined the antinociceptive effect of LCM on spinal neuronal and behavioural measures of pain, in vivo, in a rat OA model.


Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

  • Shafaq Sikandar‎ et al.
  • Physiological reports‎
  • 2017‎

Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes.


Effects of GCP-II inhibition on responses of dorsal horn neurones after inflammation and neuropathy: an electrophysiological study in the rat.

  • Katherine J Carpenter‎ et al.
  • Neuropeptides‎
  • 2003‎

N-Acetylaspartylglutamate (NAAG) is a peptide neurotransmitter present in the brain and spinal cord. It is hydrolysed by glutamate carboxypeptidase II (GCPII); thus, the GCP-II inhibitor 2-[phosphono-methyl]-pentanedioic acid (2-PMPA) protects endogenous NAAG from degradation, allowing its effects to be studied in vivo. We recorded the effect of spinal 2-PMPA (50-1000 microg) on the electrical-evoked activity of dorsal horn neurones in normal and carrageenan-inflamed animals, and in the spinal nerve ligation (SNL) model of neuropathy and sham-operated animals. In normal animals, 1000 microg 2-PMPA selectively inhibited noxious-evoked activity (input, post-discharge and C- and Adelta-fibre-evoked responses), and not low threshold Abeta-fibre-evoked responses. After carrageenan inflammation, the lower dose of 100 microg 2-PMPA inhibited input, post-discharge, C- and Adelta-fibre-evoked responses by a significantly greater amount than the same dose in normal animals. 2-PMPA inhibited neuronal responses less consistently in sham-operated and SNL animals, and effects were not significantly different from those seen in normal animals. NAAG is an agonist at the inhibitory metabotropic glutamate receptor mGluR3, and 2-PMPA may inhibit nociceptive transmission in normal animals by elevating synaptic NAAG levels, allowing it to activate mGluR3 and thus reducing transmitter release from afferent nerve terminals. mGluR3 expression in the superficial dorsal horn is upregulated after peripheral inflammation, perhaps explaining the greater inhibition of neuronal responses we observed after carrageenan inflammation. These results support an important role of endogenous NAAG in the spinal processing of noxious information.


Behavioural and electrophysiological characterisation of experimentally induced osteoarthritis and neuropathy in C57Bl/6 mice.

  • Victoria L Harvey‎ et al.
  • Molecular pain‎
  • 2009‎

Osteoarthritis is a widespread condition affecting the elderly where approximately 70-90% of over 75 year olds are affected, representing one of the largest cost burdens to healthcare in the western world. The monosodium iodoacetate (MIA) osteoarthritis model has been well described in the rat especially in terms of the pathological progression of the disease and more recently pain behaviour. In this study, we characterise, for the first time, MIA induced osteoarthritis in mice and compare it with nerve-injured mice (partial sciatic nerve injury), using both behavioural and in vivo electrophysiological measurements. These approaches uniquely allow the threshold and suprathreshold measures to many modalities to be quantified and so form a basis for improving and expanding transgenic studies.


The impact of bone cancer on the peripheral encoding of mechanical pressure stimuli.

  • Mateusz W Kucharczyk‎ et al.
  • Pain‎
  • 2020‎

Skeletal metastases are frequently accompanied by chronic pain that is mechanoceptive in nature. Mechanistically, cancer-induced bone pain (CIBP) is mediated by peripheral sensory neurons innervating the cancerous site, the cell bodies of which are housed in the dorsal root ganglia (DRG). How these somatosensory neurons encode sensory information in CIBP remains only partly explained. Using a validated rat model, we first confirmed cortical bone destruction in CIBP but not sham-operated rats (day 14 after surgery, designated "late"-stage bone cancer). This occurred with behavioural mechanical hypersensitivity (Kruskal-Wallis H for independent samples; CIBP vs sham-operated, day 14; P < 0.0001). Next, hypothesising that the proportion and phenotype of primary afferents would be altered in the disease state, dorsal root ganglia in vivo imaging of genetically encoded calcium indicators and Markov Cluster Analysis were used to analyse 1748 late-stage CIBP (n = 10) and 757 sham-operated (n = 9), neurons. Distinct clusters of responses to peripheral stimuli were revealed. In CIBP rats, upon knee compression of the leg ipsilateral to the tumour, (1) 3 times as many sensory afferents responded (repeated-measures analysis of variance: P < 0.0001 [vs sham]); (2) there were significantly more small neurons responding (Kruskal-Wallis for independent samples (vs sham): P < 0.0001); and (3) approximately 13% of traced tibial cavity afferents responded (no difference observed between CIBP and sham-operated animals). We conclude that an increased sensory afferent response is present in CIBP rats, and this is likely to reflect afferent recruitment from outside of the bone rather than increased intraosseous afferent activity.


Morphine sensitivity of spinal neurons in the chronic constriction injury neuropathic rat pain model.

  • Silke J Hirsch‎ et al.
  • Neuroscience letters‎
  • 2014‎

Opioid analgesia involves suppression of neuronal activity in central sensory pathways. We show that the classic opioid morphine reduces spinal neuronal spontaneous and evoked activity after induction of neuropathy by chronic constriction injury of the sciatic nerve in rats. The minimal effective dose of morphine was 0.3 mg/kg for most response parameters tested. Morphine sensitivity of spinal cord neurons is similar across neuropathic pain models. We therefore conclude that nerve damage per se rather than the experimental model determines the effectiveness of opioids in general and investigate several pain measurement endpoints which might be important to clinically determine morphine's efficacy in neuropathic pain.


A combination pharmacotherapy of tapentadol and pregabalin to tackle centrally driven osteoarthritis pain.

  • Stevie Margaret Lockwood‎ et al.
  • European journal of pain (London, England)‎
  • 2019‎

Many Osteoarthritis (OA) patients report with clinical features to their pain that cannot be explained by purely peripheral mechanisms. Yet, the analgesic agents available that tackle centrally driven chronic pain often provide only partial pain relief, or have dose-limiting side effects. We explored a combination therapy of the centrally acting analgesic agents tapentadol and pregabalin, to investigate if they could be used in combination to provide superior analgesia.


Anti-hyperalgesic effects of a novel TRPM8 agonist in neuropathic rats: a comparison with topical menthol.

  • Ryan Patel‎ et al.
  • Pain‎
  • 2014‎

Menthol has historically been used topically to alleviate various pain conditions. At low concentrations, this non-selective TRPM8 agonist elicits a cooling sensation, however higher concentrations result in cold hyperalgesia in normal subjects and paradoxically analgesia in neuropathic patients. Through behavioural and electrophysiological means, we examined whether this back-translated into a pre-clinical rodent model. Menthol was applied topically to the hind paws of naive and spinal nerve-ligated (SNL) rats. In behavioural assays, menthol did not affect withdrawal thresholds to mechanical stimulation and 10% and 40% menthol rarely sensitised withdrawals to innocuous cooling in naïve rats. However, in SNL rats, 10% and 40% menthol alleviated cold hypersensitivity. This was partly corroborated by in vivo electrophysiological recordings of dorsal horn lamina V/VI neurones. As several studies have implicated TRPM8 in analgesia, we examined whether a novel systemically available TRPM8 agonist, M8-Ag, had more potent anti-hyperalgesic effects than menthol in neuropathic rats. In vitro, M8-Ag activates TRPM8, expressed in HEK293 cells, with an EC50 of 44.97 nM. In vivo, M8-Ag inhibited neuronal responses to innocuous and noxious cooling in SNL rats with no effect in sham-operated rats. This effect was modality selective; M8-Ag did not alter neuronal responses to mechanical, heat or brush stimulation. In addition, M8-Ag attenuated behavioural hypersensitivity to innocuous cooling but not mechanical stimulation. These data suggest that menthol induced hyperalgesia is not consistently replicable in the rat and that the analgesic properties are revealed by injury. Systemic TRPM8 agonists might be beneficial in neuropathy without affecting normal cold sensitivity.


Effect of the spider toxin Tx3-3 on spinal processing of sensory information in naive and neuropathic rats: an in vivo electrophysiological study.

  • Gerusa D Dalmolin‎ et al.
  • Pain reports‎
  • 2017‎

Drugs that counteract nociceptive transmission in the spinal dorsal horn preferentially after nerve injury are being pursued as possible neuropathic pain treatments. In a previous behavioural study, the peptide toxin Tx3-3, which blocks P/Q- and R-type voltage-gated calcium channels, was effective in neuropathic pain models.


Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone.

  • Ryan Patel‎ et al.
  • Pain‎
  • 2018‎

Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve-ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats, these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost, but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. By contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared with sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states, descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.


A pronociceptive role for the 5-HT2 receptor on spinal nociceptive transmission: an in vivo electrophysiological study in the rat.

  • Wahida Rahman‎ et al.
  • Brain research‎
  • 2011‎

Serotonin (5-HT) plays a major yet complex role in modulating spinal nociceptive transmission as a consequence of the number of 5-HT receptor subtypes. These include the 5-HT2 receptor, which is further sub classified into 5-HT2A, B and C. Studies have described both a pro- and antinociceptive action following 5-HT2A-receptor activation; therefore, to shed light on the directional nature of spinal 5-HT2A receptor activity, we investigated the effects of spinal administration of the 5-HT2A receptor antagonist, ketanserin, on the evoked responses of dorsal horn neurones to electrical, mechanical and thermal stimulation. We also assessed the effects of systemic administration of ritanserin, a 5-HT2A/2C receptor antagonist and spinal application of (±)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (DOI) (3.6 and 17.8μg/50μl), a 5-HT2A/2C agonist, on the same evoked neuronal responses. Ketanserin (1, 10 and 100μg/50μl) produced a dose related inhibition of the evoked responses to noxious mechanical punctate and thermal stimuli only. Ritanserin (2mg/kg) replicated the inhibitory effects seen with ketanserin on the natural evoked neuronal responses and also potently inhibited the C-fibre, post discharge, input and wind-up evoked responses. DOI increased the mechanical and thermal evoked responses, an effect reversed by ketanserin. Thus, our findings show that spinal ketanserin (1-100μg/50μl) and systemic ritanserin (2mg/kg), at these doses, have similar antinociceptive effects, whereas the agonist, DOI, produced excitatory effects, on spinal neuronal activity. Our data, therefore, supports a pronociceptive role for 5-HT2 receptors, most likely through modulation of 5-HT2A receptor activity, on spinal nociceptive transmission under normal conditions.


Descending facilitation from the brainstem determines behavioural and neuronal hypersensitivity following nerve injury and efficacy of pregabalin.

  • Lucy A Bee‎ et al.
  • Pain‎
  • 2008‎

Various mechanisms at peripheral, spinal and/or supraspinal levels may underlie neuropathic pain. The nervous system's capacity for long-term reorganisation and chronic pain may result from abnormalities in RVM facilitatory On cells. Hence, via brainstem injections of the toxic conjugate dermorphin-saporin, which specifically lesions facilitatory cells expressing the mu-opioid receptor (MOR), we sought to determine the influence of these cells in normal and spinal nerve-ligated (SNL) rats. We combined behavioural, electrophysiological and pharmacological techniques to show that the supraspinal facilitatory drive is essential for neuronal processing of noxious stimuli in normal and neuropathic states, and that descending facilitatory neurones maintain behavioural hypersensitivities to mechanical stimuli during the late stages of nerve injury. Furthermore, we showed that these neurones are essential for the state-dependent inhibitory actions of pregabalin (PGB), a drug used in the treatment of neuropathic pain. During the early stages of nerve injury, or following medullary MOR cell ablation, PGB is ineffective at inhibiting spinal neuronal responses possibly due to quiescent spinal 5HT(3) receptors. This can however be overcome, and PGB's efficacy restored, by pharmacologically mimicking the descending drive at the spinal level with a 5HT(3) receptor agonist. Since RVM facilitatory neurones are integral to a spino-bulbo-spinal loop that reaches brain areas co-ordinating the sensory and affective components of pain, we propose that activity therein may influence painful outcome following nerve injury, and responsiveness to treatment.


Nerve injury increases native Ca V 2.2 trafficking in dorsal root ganglion mechanoreceptors.

  • Manuela Nieto-Rostro‎ et al.
  • Pain‎
  • 2023‎

Neuronal N-type (Ca V 2.2) voltage-gated calcium channels are essential for neurotransmission from primary afferent terminals in the dorsal horn. In this study, we have used a knockin mouse containing Ca V 2.2 with an inserted extracellular hemagglutinin tag (Ca V 2.2_HA), to visualise the pattern of expression of endogenous Ca V 2.2 in dorsal root ganglion (DRG) neurons and their primary afferents in the dorsal horn. We examined the effect of partial sciatic nerve ligation (PSNL) and found an increase in Ca V 2.2_HA only in large and medium dorsal root ganglion neurons and also in deep dorsal horn synaptic terminals. Furthermore, there is a parallel increase in coexpression with GFRα1, present in a population of low threshold mechanoreceptors, both in large DRG neurons and in their terminals. The increased expression of Ca V 2.2_HA in these DRG neurons and their terminals is dependent on the presence of the auxiliary subunit α 2 δ-1, which is required for channel trafficking to the cell surface and to synaptic terminals, and it likely contributes to enhanced synaptic transmission at these synapses following PSNL. By contrast, the increase in GFRα1 is not altered in α 2 δ-1-knockout mice. We also found that following PSNL, there is patchy loss of glomerular synapses immunoreactive for Ca V 2.2_HA and CGRP or IB4, restricted to the superficial layers of the dorsal horn. This reduction is not dependent on α 2 δ-1 and likely reflects partial deafferentation of C-nociceptor presynaptic terminals. Therefore, in this pain model, we can distinguish 2 different events affecting specific DRG terminals, with opposite consequences for Ca V 2.2_HA expression and function in the dorsal horn.


A novel spinal action of mexiletine in spinal somatosensory transmission of nerve injured rats.

  • Victoria Chapman‎ et al.
  • Pain‎
  • 1998‎

Mexiletine is widely used for the treatment of neuropathic pain although its site(s) of action remain unclear. Here we have studied the effect of spinal administration of mexiletine (10-1000 microg) on the spontaneous and peripherally evoked responses of spinal neurones of nerve injured (selective ligation of spinal nerves L5-L6; SNL) rats. Sham controls for the surgical intervention were performed. A high proportion of the spinal neurones of SNL rats exhibited de novo spontaneous activity (mean frequency of firing 4+/-1 Hz), this activity was highly sensitive to spinal mexiletine (F5,55 = 2.5, P < or = 0.05). The spinal neurones of the sham operated rats exhibited negligible spontaneous activity. The electrically evoked Abeta-fibre neuronal responses of SNL and sham operated rats were not significantly influenced by spinal mexiletine. In contrast, the Adelta-fibre and C-fibre evoked neuronal responses of the SNL rats, but not sham operated rats, were significantly reduced by spinal mexiletine (F5.52 = 4.9, P < or = 0.001 and F5,48 = 12, P < or = 0.0001, respectively). In addition, the mechanical punctate von Frey 9 and 50 g evoked neuronal responses of the SNL rats, but not sham operated rats, were significantly reduced by spinal mexiletine (F5,57 = 4.3, P < or = 0.002 and F5,52 = 6.1, P < or = 0.001). This pharmacological study suggests that following nerve injury there is a novel mexiletine sensitive spinal substrate which contributes to Adelta-fibre and C-fibre, but not Abeta-fibre, somatosensory transmission. This central action may underlie some of the clinical efficacy of mexiletine in the treatment of neuropathic pain states.


Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain.

  • Klio Maratou‎ et al.
  • European journal of pain (London, England)‎
  • 2009‎

To elucidate the mechanisms underlying peripheral neuropathic pain in the context of HIV infection and antiretroviral therapy, we measured gene expression in dorsal root ganglia (DRG) of rats subjected to systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) and concomitant delivery of HIV-gp120 to the rat sciatic nerve. L4 and L5 DRGs were collected at day 14 (time of peak behavioural change) and changes in gene expression were measured using Affymetrix whole genome rat arrays. Conventional analysis of this data set and Gene Set Enrichment Analysis (GSEA) was performed to discover biological processes altered in this model. Transcripts associated with G protein coupled receptor signalling and cell adhesion were enriched in the treated animals, while ribosomal proteins and proteasome pathways were associated with gene down-regulation. To identify genes that are directly relevant to neuropathic mechanical hypersensitivity, as opposed to epiphenomena associated with other aspects of the response to a sciatic nerve lesion, we compared the gp120+ddC-evoked gene expression with that observed in a model of traumatic neuropathic pain (L5 spinal nerve transection), where hypersensitivity to a static mechanical stimulus is also observed. We identified 39 genes/expressed sequence tags that are differentially expressed in the same direction in both models. Most of these have not previously been implicated in mechanical hypersensitivity and may represent novel targets for therapeutic intervention. As an external control, the RNA expression of three genes was examined by RT-PCR, while the protein levels of two were studied using western blot analysis.


Studying Independent Kcna6 Knock-out Mice Reveals Toxicity of Exogenous LacZ to Central Nociceptor Terminals and Differential Effects of Kv1.6 on Acute and Neuropathic Pain Sensation.

  • Liam J Peck‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice (Kcna6lacZ ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice (Kcna6-/-) but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using lacZ Nonetheless, in Kcna6-/- mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury.SIGNIFICANCE STATEMENT In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.


Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin.

  • Ryan Patel‎ et al.
  • Journal of neurophysiology‎
  • 2016‎

Neuropathic pain represents a substantial clinical challenge; understanding the underlying neural mechanisms and back-translation of therapeutics could aid targeting of treatments more effectively. The ventral posterior thalamus (VP) is the major termination site for the spinothalamic tract and relays nociceptive activity to the somatosensory cortex; however, under neuropathic conditions, it is unclear how hyperexcitability of spinal neurons converges onto thalamic relays. This study aimed to identify neural substrates of hypersensitivity and the influence of pregabalin on central processing. In vivo electrophysiology was performed to record from VP wide dynamic range (WDR) and nociceptive-specific (NS) neurons in anesthetized spinal nerve-ligated (SNL), sham-operated, and naive rats. In neuropathic rats, WDR neurons had elevated evoked responses to low- and high-intensity punctate mechanical stimuli, dynamic brushing, and innocuous and noxious cooling, but less so to heat stimulation, of the receptive field. NS neurons in SNL rats also displayed increased responses to noxious punctate mechanical stimulation, dynamic brushing, noxious cooling, and noxious heat. Additionally, WDR, but not NS, neurons in SNL rats exhibited substantially higher rates of spontaneous firing, which may correlate with ongoing pain. The ratio of WDR-to-NS neurons was comparable between SNL and naive/sham groups, suggesting relatively few NS neurons gain sensitivity to low-intensity stimuli leading to a "WDR phenotype." After neuropathy was induced, the proportion of cold-sensitive WDR and NS neurons increased, supporting the suggestion that changes in frequency-dependent firing and population coding underlie cold hypersensitivity. In SNL rats, pregabalin inhibited mechanical and heat responses but not cold-evoked or elevated spontaneous activity.


Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models.

  • Jessica O'Neill‎ et al.
  • The Journal of physiology‎
  • 2015‎

Translational research is key to bridging the gaps between preclinical findings and the patients, and a translational model of inflammatory pain will ideally induce both peripheral and central sensitisation, more effectively mimicking clinical pathophysiology in some chronic inflammatory conditions. We conducted a parallel investigation of two models of inflammatory pain, using ultraviolet B (UVB) irradiation alone and UVB irradiation with heat rekindling. We used rodent electrophysiology and human quantitative sensory testing to characterise nociceptive processing in the peripheral and central nervous systems in both models. In both species, UVB irradiation produces peripheral sensitisation measured as augmented evoked activity of rat dorsal horn neurones and increased perceptual responses of human subjects to mechanical and thermal stimuli. In both species, UVB with heat rekindling produces central sensitisation. UVB irradiation alone and UVB with heat rekindling are translational models of inflammation that produce peripheral and central sensitisation, respectively. The predictive value of laboratory models for human pain processing is crucial for improving translational research. The discrepancy between peripheral and central mechanisms of pain is an important consideration for drug targets, and here we describe two models of inflammatory pain that involve ultraviolet B (UVB) irradiation, which can employ peripheral and central sensitisation to produce mechanical and thermal hyperalgesia in rats and humans. We use electrophysiology in rats to measure the mechanically- and thermally-evoked activity of rat spinal neurones and quantitative sensory testing to assess human psychophysical responses to mechanical and thermal stimulation in a model of UVB irradiation and in a model of UVB irradiation with heat rekindling. Our results demonstrate peripheral sensitisation in both species driven by UVB irradiation, with a clear mechanical and thermal hypersensitivity of rat dorsal horn neurones and enhanced perceptual responses of human subjects to both mechanical and thermal stimulation. Additional heat rekindling produces markers of central sensitisation in both species, including enhanced receptive field sizes. Importantly, we also showed a correlation in the evoked activity of rat spinal neurones to human thermal pain thresholds. The parallel results in rats and humans validate the translational use of both models and the potential for such models for preclinical assessment of prospective analgesics in inflammatory pain states.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: