Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety.

  • Martin Schmelz‎ et al.
  • Pain‎
  • 2019‎

Chronic pain continues to be a significant global burden despite the availability of a variety of nonpharmacologic and pharmacologic treatment options. Thus, there is a need for new analgesics with novel mechanisms of action. In this regard, antibodies directed against nerve growth factor (NGF-Abs) are a new class of agents in development for the treatment of chronic pain conditions such as osteoarthritis and chronic low-back pain. This comprehensive narrative review summarizes evidence supporting pronociceptive functions for NGF that include contributing to peripheral and central sensitization through tropomyosin receptor kinase A activation and stimulation of local neuronal sprouting. The potential role of NGF in osteoarthritis and chronic low-back pain signaling is also examined to provide a mechanistic basis for the observed efficacy of NGF-Abs in clinical trials of these particular pain states. Finally, the safety profile of NGF-Abs in terms of common adverse events, joint safety, and nerve structure/function is discussed.


The role of intra-articular neuronal CCR2 receptors in knee joint pain associated with experimental osteoarthritis in mice.

  • Shingo Ishihara‎ et al.
  • Arthritis research & therapy‎
  • 2021‎

C-C chemokine receptor 2 (CCR2) signaling plays a key role in pain associated with experimental murine osteoarthritis (OA) after destabilization of the medial meniscus (DMM). Here, we aimed to assess if CCR2 expressed by intra-articular sensory neurons contributes to knee hyperalgesia in the early stages of the model.


Sensory profiling in classical Ehlers-Danlos syndrome: a case-control study revealing pain characteristics, somatosensory changes, and impaired pain modulation.

  • Marlies Colman‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Pain is one of the most important, yet poorly understood complaints in heritable connective tissue disorders (HCTD) caused by monogenic defects in extracellular matrix molecules. This is particularly the case for Ehlers-Danlos syndromes (EDS), paradigm collagen-related disorders. This study aimed to identify the pain signature and somatosensory characteristics in the rare classical type of EDS (cEDS) caused by defects in type V or rarely type I collagen. We used static and dynamic quantitative sensory testing and validated questionnaires in 19 individuals with cEDS and 19 matched controls. Individuals with cEDS reported clinically relevant pain/discomfort (VAS ≥5/10 in 32% for average pain intensity the past month) and worse health -related quality of life. Altered sensory profile was found in the cEDS group with higher (p=0.04) detection thresholds for vibration stimuli at the lower limb indicating hypoesthesia, reduced thermal sensitivity with more (p<0.001) paradoxical thermal sensations, and hyperalgesia with lower pain thresholds to mechanical (p<0.001) stimuli at both the upper and lower limbs and to cold (p=0.005) stimulation at the lower limb. Using a parallel conditioned pain paradigm, the cEDS group showed significantly smaller antinociceptive responses (p-value between 0.005 and 0.046) suggestive of impaired endogenous central pain modulation. In conclusion, Individuals with cEDS report chronic pain and worse health-related quality of life, and present altered somatosensory perception. This study is the first to systematically investigate pain and somatosensory characteristics in a genetically defined HCTD and provides interesting insights on the possible role of the ECM in the development and persistence of pain.


Recommendations For a Standardized Approach to Histopathologic Evaluation of Synovial Membrane in Murine Models of Experimental Osteoarthritis.

  • Alia M Obeidat‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA.


Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis.

  • Alia M Obeidat‎ et al.
  • Nature communications‎
  • 2023‎

Non-opioid targets are needed for addressing osteoarthritis pain, which is mechanical in nature and associated with daily activities such as walking and climbing stairs. Piezo2 has been implicated in the development of mechanical pain, but the mechanisms by which this occurs remain poorly understood, including the role of nociceptors. Here we show that nociceptor-specific Piezo2 conditional knock-out mice were protected from mechanical sensitization associated with inflammatory joint pain in female mice, joint pain associated with osteoarthritis in male mice, as well as both knee swelling and joint pain associated with repeated intra-articular injection of nerve growth factor in male mice. Single cell RNA sequencing of mouse lumbar dorsal root ganglia and in situ hybridization of mouse and human lumbar dorsal root ganglia revealed that a subset of nociceptors co-express Piezo2 and Ntrk1 (the gene that encodes the nerve growth factor receptor TrkA). These results suggest that nerve growth factor-mediated sensitization of joint nociceptors, which is critical for osteoarthritic pain, is also dependent on Piezo2, and targeting Piezo2 may represent a therapeutic option for osteoarthritis pain control.


Nanoparticles for improved local retention after intra-articular injection into the knee joint.

  • Michael Morgen‎ et al.
  • Pharmaceutical research‎
  • 2013‎

To evaluate using cationic polymeric nanoparticles that interact with hyaluronate to form ionically cross-linked hydrogels to increase the intra-articular retention time of osteoarthritis drugs in the synovial cavity.


Notch signaling is activated in knee-innervating dorsal root ganglia in experimental models of osteoarthritis joint pain.

  • Lai Wang‎ et al.
  • Arthritis research & therapy‎
  • 2023‎

We aimed to explore activation of the Notch signaling pathway in knee-innervating lumbar dorsal root ganglia (DRG) in the course of experimental osteoarthritis (OA) in mice, and its role in knee hyperalgesia.


Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics.

  • Dale S George‎ et al.
  • Pain‎
  • 2022‎

Painful diabetic neuropathy (PDN) is an intractable complication affecting 25% of diabetic patients. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, resulting in calcium overload, axonal degeneration, and loss of cutaneous innervation. The molecular pathways underlying these effects are unknown. Using high-throughput and deep-proteome profiling, we found that mitochondrial fission proteins were elevated in DRG neurons from mice with PDN induced by a high-fat diet (HFD). In vivo calcium imaging revealed increased calcium signaling in DRG nociceptors from mice with PDN. Furthermore, using electron microscopy, we showed that mitochondria in DRG nociceptors had fragmented morphology as early as 2 weeks after starting HFD, preceding the onset of mechanical allodynia and small-fiber degeneration. Moreover, preventing calcium entry into the mitochondria, by selectively deleting the mitochondrial calcium uniporter from these neurons, restored normal mitochondrial morphology, prevented axonal degeneration, and reversed mechanical allodynia in the HFD mouse model of PDN. These studies suggest a molecular cascade linking neuropathic pain to axonal degeneration in PDN. In particular, nociceptor hyperexcitability and the associated increased intracellular calcium concentrations could lead to excessive calcium entry into mitochondria mediated by the mitochondrial calcium uniporter, resulting in increased calcium-dependent mitochondrial fission and ultimately contributing to small-fiber degeneration and neuropathic pain in PDN. Hence, we propose that targeting calcium entry into nociceptor mitochondria may represent a promising effective and disease-modifying therapeutic approach for this currently intractable and widespread affliction. Moreover, these results are likely to inform studies of other neurodegenerative disease involving similar underlying events.


Machine Learning Reveals Synovial Fibroblast Genes Associated with Pain Affect Sensory Nerve Growth in Rheumatoid Arthritis.

  • Zilong Bai‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We identified a module of 815 genes associated with pain, using a novel machine learning approach, Graph-based Gene expression Module Identification (GbGMI), in samples from patients with longstanding RA, but limited synovial inflammation at arthroplasty, and validated this finding in an independent cohort of synovial biopsy samples from early, untreated RA patients. Single-cell RNA-seq analyses indicated these genes were most robustly expressed by lining layer fibroblasts and receptor-ligand interaction analysis predicted robust lining layer fibroblast crosstalk with pain sensitive CGRP+ dorsal root ganglion sensory neurons. Netrin-4, which is abundantly expressed by lining fibroblasts and associated with pain, significantly increased the branching of pain-sensitive CGRP+ neurons in vitro . We conclude GbGMI is a useful method for identifying a module of genes that associate with a clinical feature of interest. Using this approach, we find that Netrin-4 is produced by synovial fibroblasts in the absence of inflammation and can enhance the outgrowth of CGRP+ pain sensitive nerve fibers.


Analysis of matrisome expression patterns in murine and human dorsal root ganglia.

  • Robin Vroman‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2023‎

The extracellular matrix (ECM) is a dynamic structure of molecules that can be divided into six different categories and are collectively called the matrisome. The ECM plays pivotal roles in physiological processes in many tissues, including the nervous system. Intriguingly, alterations in ECM molecules/pathways are associated with painful human conditions and murine pain models. Nevertheless, mechanistic insight into the interplay of normal or defective ECM and pain is largely lacking. The goal of this study was to integrate bulk, single-cell, and spatial RNA sequencing (RNAseq) datasets to investigate the expression and cellular origin of matrisome genes in male and female murine and human dorsal root ganglia (DRG). Bulk RNAseq showed that about 65% of all matrisome genes were expressed in both murine and human DRG, with proportionally more core matrisome genes (glycoproteins, collagens, and proteoglycans) expressed compared to matrisome-associated genes (ECM-affiliated genes, ECM regulators, and secreted factors). Single cell RNAseq on male murine DRG revealed the cellular origin of matrisome expression. Core matrisome genes, especially collagens, were expressed by fibroblasts whereas matrisome-associated genes were primarily expressed by neurons. Cell-cell communication network analysis with CellChat software predicted an important role for collagen signaling pathways in connecting vascular cell types and nociceptors in murine tissue, which we confirmed by analysis of spatial transcriptomic data from human DRG. RNAscope in situ hybridization and immunohistochemistry demonstrated expression of collagens in fibroblasts surrounding nociceptors in male and female human DRG. Finally, comparing human neuropathic pain samples with non-pain samples also showed differential expression of matrisome genes produced by both fibroblasts and by nociceptors. This study supports the idea that the DRG matrisome may contribute to neuronal signaling in both mouse and human, and that dysregulation of matrisome genes is associated with neuropathic pain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: