Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression.

  • Anja Mottok‎ et al.
  • Cell reports‎
  • 2015‎

Primary mediastinal large B cell lymphoma (PMBCL) is an aggressive non-Hodgkin's lymphoma, predominantly affecting young patients. We analyzed 45 primary PMBCL tumor biopsies and 3 PMBCL-derived cell lines for the presence of genetic alterations involving the major histocompatibility complex (MHC) class II transactivator CIITA and found frequent aberrations consisting of structural genomic rearrangements, missense, nonsense, and frame-shift mutations (53% of primary tumor biopsies and all cell lines). We also detected intron 1 mutations in 47% of the cases, and detailed sequence analysis strongly suggests AID-mediated aberrant somatic hypermutation as the mutational mechanism. Furthermore, we demonstrate that genomic lesions in CIITA result in decreased protein expression and reduction of MHC class II surface expression, creating an immune privilege phenotype in PMBCL. In summary, we establish CIITA alterations as a common mechanism of immune escape through reduction of MHC class II expression in PMBCL, with potential implications for future treatments targeting microenvironment-related biology.


An RCOR1 loss-associated gene expression signature identifies a prognostically significant DLBCL subgroup.

  • Fong Chun Chan‎ et al.
  • Blood‎
  • 2015‎

Effective treatment of diffuse large B-cell lymphoma (DLBCL) is plagued by heterogeneous responses to standard therapy, and molecular mechanisms underlying unfavorable outcomes in lymphoma patients remain elusive. Here, we profiled 148 genomes with 91 matching transcriptomes in a DLBCL cohort treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) to uncover molecular subgroups linked to treatment failure. Systematic integration of high-resolution genotyping arrays and RNA sequencing data revealed novel deletions in RCOR1 to be associated with unfavorable progression-free survival (P = .001). Integration of expression data from the clinical samples with data from RCOR1 knockdowns in the lymphoma cell lines KM-H2 and Raji yielded an RCOR1 loss-associated gene signature comprising 233 genes. This signature identified a subgroup of patients with unfavorable overall survival (P = .023). The prognostic significance of the 233-gene signature for overall survival was reproduced in an independent cohort comprising 195 R-CHOP-treated patients (P = .039). Additionally, we discovered that within the International Prognostic Index low-risk group, the gene signature provides additional prognostic value that was independent of the cell-of-origin phenotype. We present a novel and reproducible molecular subgroup of DLBCL that impacts risk-stratification of R-CHOP-treated DLBCL patients and reveals a possible new avenue for therapeutic intervention strategies.


Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells.

  • Michael Boice‎ et al.
  • Cell‎
  • 2016‎

The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (TFH) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM(P37-V202)) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein.


A T-Cell Surface Marker Panel Predicts Murine Acute Graft-Versus-Host Disease.

  • Carina A Bäuerlein‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Acute graft-versus-host disease (aGvHD) is a severe and often life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). AGvHD is mediated by alloreactive donor T-cells targeting predominantly the gastrointestinal tract, liver, and skin. Recent work in mice and patients undergoing allo-HCT showed that alloreactive T-cells can be identified by the expression of α4β7 integrin on T-cells even before manifestation of an aGvHD. Here, we investigated whether the detection of a combination of the expression of T-cell surface markers on peripheral blood (PB) CD8+ T-cells would improve the ability to predict aGvHD. To this end, we employed two independent preclinical models of minor histocompatibility antigen mismatched allo-HCT following myeloablative conditioning. Expression profiles of integrins, selectins, chemokine receptors, and activation markers of PB donor T-cells were measured with multiparameter flow cytometry at multiple time points before the onset of clinical aGvHD symptoms. In both allo-HCT models, we demonstrated a significant upregulation of α4β7 integrin, CD162E, CD162P, and conversely, a downregulation of CD62L on donor T-cells, which could be correlated with the development of aGvHD. Other surface markers, such as CD25, CD69, and CC-chemokine receptors were not found to be predictive markers. Based on these preclinical data from mouse models, we propose a surface marker panel on peripheral blood T-cells after allo-HCT combining α4β7 integrin with CD62L, CD162E, and CD162P (cutaneous lymphocyte antigens, CLA, in humans) to identify patients at risk for developing aGvHD early after allo-HCT.


Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma.

  • Sarah E Arthur‎ et al.
  • Nature communications‎
  • 2018‎

Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3' UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics.


Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity.

  • Yin Xiao‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

Posttranslational modification with SUMO is known to regulate the activity of transcription factors, but how SUMOylation of individual proteins might influence immunity is largely unexplored. The NFAT transcription factors play an essential role in antigen receptor-mediated gene regulation. SUMOylation of NFATc1 represses IL-2 in vitro, but its role in T cell-mediated immune responses in vivo is unclear. To this end, we generated a novel transgenic mouse in which SUMO modification of NFATc1 is prevented. Avoidance of NFATc1 SUMOylation ameliorated experimental autoimmune encephalomyelitis as well as graft-versus-host disease. Elevated IL-2 production in T cells promoted T reg expansion and suppressed autoreactive or alloreactive immune responses. Mechanistically, increased IL-2 secretion counteracted IL-17 and IFN-γ expression through STAT5 and Blimp-1 induction. Then, Blimp-1 repressed IL-2 itself, as well as the induced, proliferation-associated survival factor Bcl2A1. Collectively, these data demonstrate that prevention of NFATc1 SUMOylation fine-tunes T cell responses toward lasting tolerance. Thus, targeting NFATc1 SUMOylation presents a novel and promising strategy to treat T cell-mediated inflammatory diseases.


Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion.

  • Martin Chopra‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

Donor CD4(+)Foxp3(+) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT [allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2- and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.


Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis.

  • Julien Broséus‎ et al.
  • Nature communications‎
  • 2023‎

Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL). We characterize 58 primary human RS samples by genome-wide DNA methylation and whole-transcriptome profiling. Our comprehensive approach determines RS DNA methylation profile and unravels a CLL epigenetic imprint, allowing CLL-RS clonal relationship assessment without the need of the initial CLL tumor DNA. DNA methylation- and transcriptomic-based classifiers were developed, and testing on landmark DLBCL datasets identifies a poor-prognosis, activated B-cell-like DLBCL subset in 111/1772 samples. The classification robustly identifies phenotypes very similar to RS with a specific genomic profile, accounting for 4.3-8.3% of de novo DLBCLs. In this work, RS multi-omics characterization determines oncogenic mechanisms, establishes a surrogate marker for CLL-RS clonal relationship, and provides a clinically relevant classifier for a subset of primary "RS-type DLBCL" with unfavorable prognosis.


Comprehensive miRNA sequence analysis reveals survival differences in diffuse large B-cell lymphoma patients.

  • Emilia L Lim‎ et al.
  • Genome biology‎
  • 2015‎

Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease, with 30% to 40% of patients failing to be cured with available primary therapy. microRNAs (miRNAs) are RNA molecules that attenuate expression of their mRNA targets. To characterize the DLBCL miRNome, we sequenced miRNAs from 92 DLBCL and 15 benign centroblast fresh frozen samples and from 140 DLBCL formalin-fixed, paraffin-embedded tissue samples for validation.


Identification of the atypically modified autoantigen Ars2 as the target of B-cell receptors from activated B-cell-type diffuse large B-cell lymphoma.

  • Lorenz Thurner‎ et al.
  • Haematologica‎
  • 2021‎

It has been suggested that B-cell receptor (BCRs) stimulation by specific antigens plays a pathogenic role in diffuse large B-cell lymphoma (DLBCL). Here, it was the aim to screen for specific reactivities of DLBCL-BCRs in the spectrum of autoantigens and antigens of infectious origin. Arsenite resistance protein 2 (Ars2) was identified as the BCR target of 3/5 ABC-type DLBCL cell lines and 2/11 primary DLBCL cases. Compared to controls, Ars2 was hypo-phosphorylated exclusively in cases and cell lines with Ars2-specific BCRs. In a validation cohort, hypo-phosphorylated Ars2 was found in 8/31 ABC-type, but only 1/20 germinal center B cell (GBC)-like type DLBCL. Incubation with Ars2 induced BCR-pathway activation and increased proliferation, while an Ars2/ETA-toxin conjugate induced killing of cell lines with Ars2-reactive BCRs. Ars2 appears to play a role in a subgroup of ABC-type DLBCLs. Moreover, transformed DLBCL lines with Ars2-reactive BCRs still show growth advantage after incubation with Ars2. These results provide knowledge about the pathogenic role of a specific antigen stimulating the BCR pathway in DLCBL.


Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma.

  • Michal Marek Hoppe‎ et al.
  • Cancer discovery‎
  • 2023‎

Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance.


Cathepsin S Regulates Antigen Processing and T Cell Activity in Non-Hodgkin Lymphoma.

  • Elie Dheilly‎ et al.
  • Cancer cell‎
  • 2020‎

Genomic alterations in cancer cells can influence the immune system to favor tumor growth. In non-Hodgkin lymphoma, physiological interactions between B cells and the germinal center microenvironment are coopted to sustain cancer cell proliferation. We found that follicular lymphoma patients harbor a recurrent hotspot mutation targeting tyrosine 132 (Y132D) in cathepsin S (CTSS) that enhances protein activity. CTSS regulates antigen processing and CD4+ and CD8+ T cell-mediated immune responses. Loss of CTSS activity reduces lymphoma growth by limiting communication with CD4+ T follicular helper cells while inducing antigen diversification and activation of CD8+ T cells. Overall, our results suggest that CTSS inhibition has non-redundant therapeutic potential to enhance anti-tumor immune responses in indolent and aggressive lymphomas.


Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study.

  • Robert Kridel‎ et al.
  • PLoS medicine‎
  • 2016‎

Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories.


Focal structural variants revealed by whole genome sequencing disrupt the histone demethylase KDM4C in B-cell lymphomas.

  • Cristina Lopez‎ et al.
  • Haematologica‎
  • 2023‎

Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.


Non-invasive imaging provides spatiotemporal information on disease progression and response to therapy in a murine model of multiple myeloma.

  • Simone S Riedel‎ et al.
  • PloS one‎
  • 2012‎

Multiple myeloma (MM) is a B-cell malignancy, where malignant plasma cells clonally expand in the bone marrow of older people, causing significant morbidity and mortality. Typical clinical symptoms include increased serum calcium levels, renal insufficiency, anemia, and bone lesions. With standard therapies, MM remains incurable; therefore, the development of new drugs or immune cell-based therapies is desirable. To advance the goal of finding a more effective treatment for MM, we aimed to develop a reliable preclinical MM mouse model applying sensitive and reproducible methods for monitoring of tumor growth and metastasis in response to therapy.


Non-invasive bioluminescence imaging to monitor the immunological control of a plasmablastic lymphoma-like B cell neoplasia after hematopoietic cell transplantation.

  • Martin Chopra‎ et al.
  • PloS one‎
  • 2013‎

To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Igha(tm1(Myc)Janz)/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Igha(tm1(Myc)Janz)/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: