Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments.

  • Francesc X Guix‎ et al.
  • Molecular neurodegeneration‎
  • 2017‎

The mechanisms behind Aβ-peptide accumulation in non-familial Alzheimer's disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aβ production by interacting to γ-secretase.


Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.

  • Ira Espuny-Camacho‎ et al.
  • Neuron‎
  • 2017‎

Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.


Tetraspanin 6: A novel regulator of hippocampal synaptic transmission and long term plasticity.

  • Isabel H Salas‎ et al.
  • PloS one‎
  • 2017‎

Tetraspanins (Tspan) are transmembrane proteins with important scaffold and signalling functions. Deletions of Tetraspanin 6 (Tspan6) gene, a member of the tetraspanin family, have been reported in patients with Epilepsy Female-restricted with Mental Retardation (EFMR). Interestingly, mutations in Tspan7, highly homologous to Tspan6, are associated with X-linked intellectual disability, suggesting that these two proteins are important for cognition. Considering recent evidences showing that Tspan7 plays a key role in synapse development and AMPAR trafficking, we initiated the study of Tspan6 in synaptic function using a Tspan6 knock out mouse model. Here we report that hippocampal field recordings from Tspan6 knock out mice show an enhanced basal synaptic transmission and impaired long term potentiation (LTP). A normal paired-pulse facilitation response suggests that Tspan6 affects the properties of the postsynaptic rather than the presynaptic terminal. However, no changes in spine morphology or postsynaptic markers could be detected in Tspan6 KO mice compared with wild types. In addition, Tspan6 KO mice show normal locomotor behaviour and no defects in hippocampus-dependent memory tests.


Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques.

  • Pranav Preman‎ et al.
  • Molecular neurodegeneration‎
  • 2021‎

Increasing evidence for a direct contribution of astrocytes to neuroinflammatory and neurodegenerative processes causing Alzheimer's disease comes from molecular and functional studies in rodent models. However, these models may not fully recapitulate human disease as human and rodent astrocytes differ considerably in morphology, functionality, and gene expression.


PLD3 gene and processing of APP.

  • Pietro Fazzari‎ et al.
  • Nature‎
  • 2017‎

No abstract available


Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia.

  • Amaia M Arranz‎ et al.
  • Neurobiology of disease‎
  • 2010‎

Transient focal cerebral ischemia leads to extensive excitotoxic glial damage in the subcortical white matter. Efficient reuptake of released glutamate is essential for preventing glutamate receptor overstimulation and neuronal and glial death. The present study evaluates the expression of the main glutamate transporters (EAAT1, EAAT2, and EAAT3) in subcortical white matter of the rat after transient middle cerebral artery occlusion. Western blot analysis and immunohistochemistry show an increase in the expression of EAAT1 and EAAT2 in subcortical white matter early after ischemia which subsequently decreases at longer reperfusion periods. However, expression of both EAAT1 and EAAT2 remains higher in astrocytes forming the gliotic scar and in microglial/macrophage cells at the border of or within the infarct area, respectively. Taken together, these results indicate that there is a transient enhanced expression of EAATs in the subcortical white matter early after ischemia. Our findings reveal an adaptive response of subcortical white matter to increased levels of glutamate during focal cerebral ischemia which may limit excitotoxic damage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: